Computing Quantum Mean Values in the Deep Chaotic Regime

We study the time evolution of mean values of quantum operators in a regime plagued by two difficulties: the smallness of ℏ and the presence of strong and ubiquitous classical chaos. While numerics become too computationally expensive for purely quantum calculations as ℏ→0, methods that take advanta...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 132; no. 26; p. 260401
Main Authors: Lando, Gabriel M, Giraud, Olivier, Ullmo, Denis
Format: Journal Article
Language:English
Published: United States American Physical Society 28-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the time evolution of mean values of quantum operators in a regime plagued by two difficulties: the smallness of ℏ and the presence of strong and ubiquitous classical chaos. While numerics become too computationally expensive for purely quantum calculations as ℏ→0, methods that take advantage of the smallness of ℏ-that is, semiclassical methods-suffer from both conceptual and practical difficulties in the deep chaotic regime. We implement an approach which addresses these conceptual problems, leading to a deeper understanding of the origin of the interference contributions to the operator's mean value. We show that in the deep chaotic regime our approach is capable of unprecedented accuracy, while a standard semiclassical method (the Herman-Kluk propagator) produces only numerical noise. Our work paves the way to the development and employment of more efficient and accurate methods for quantum simulations of systems with strongly chaotic classical limits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.132.260401