Is Word Order Asymmetry Mathematically Expressible?

The computational procedure for human natural language (CHL) shows an asymmetry in unmarked orders for S, O, and V. Following Lyle Jenkins, it is speculated that the asymmetry is expressible as a group-theoretical factor (included in Chomsky’s third factor): “[W]ord order types would be the (asymmet...

Full description

Saved in:
Bibliographic Details
Published in:Biolinguistics Vol. 7; pp. 276 - 300
Main Author: Arikawa, Koji
Format: Journal Article
Language:English
Published: PsychOpen GOLD/ Leibniz Institute for Psychology 01-01-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The computational procedure for human natural language (CHL) shows an asymmetry in unmarked orders for S, O, and V. Following Lyle Jenkins, it is speculated that the asymmetry is expressible as a group-theoretical factor (included in Chomsky’s third factor): “[W]ord order types would be the (asymmetric) stable solutions of the symmetric still-to-be-discovered ‘equations’ governing word order distribution”. A possible “symmetric equation” is a linear transformation f(x) = y, where function f is a set of merge operations (transformations) expressed as a set of symmetric transformations of an equilateral triangle, x is the universal base vP input expressed as the identity triangle, and y is a mapped output tree expressed as an output triangle that preserves symmetry. Although the symmetric group S3 of order 3! = 6 is too simple, this very simplicity is the reason that in the present work cost differences are considered among the six symmetric operations of S3. This article attempts to pose a set of feasible questions for future research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1450-3417
1450-3417
DOI:10.5964/bioling.8967