Exploring the Molecular Underpinnings of Skin Regeneration and Wound Healing: The Role of Renin Angiotensin
The aim of this study is to review the role of renin-angiotensin in skin regeneration and wound healing with a focus on molecular mechanisms. Angiotensin receptor type 1 (AT1R) are abundant in the wounded area, and thus, lead to the activation of ERK, STAT1, and STAT3 which can lead to epidermal sel...
Saved in:
Published in: | Avicenna journal of medical biotechnology Vol. 16; no. 3; pp. 146 - 155 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Iran
Avicenna Research Institute
01-07-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study is to review the role of renin-angiotensin in skin regeneration and wound healing with a focus on molecular mechanisms. Angiotensin receptor type 1 (AT1R) are abundant in the wounded area, and thus, lead to the activation of ERK, STAT1, and STAT3 which can lead to epidermal self-renewal. The expression of Renin Angiotensin System (RAS) components was significantly lower in wounds caused by burning, rather than intact skin, noting that RAS is involved in the re-epithelialization of skin. ERK, STAT and STAT3 are the targets of Ang II, indicating that RAS active components are involved in fibroblast, stem cells and keratinocyte migration. The effect of inhibiting the RAS on wound healing is context-dependent. On one hand, it is suggested that inhibiting RAS during this phase may slow down wound healing speed. On the other hand, studies have shown that RAS inhibition in this phase can lead to α-SMA activation, ultimately accelerating the wound healing process. Most of the investigations indicate that the inhibition of RAS with Angiotensin Receptor Blockers (ARBs) and Angiotensin Converting Enzyme (ACE) plays a significant role in tissue remodeling in the last phase of wound healing. It has been shown that the inhibition of RAS can inhibit scar formation and fibrosis through the downregulation of inflammatory and fibrogenic agents, such as TGF-β, SMAD2/3, and TAK1, PDGF-BB, and HSP47. To sum up, that local administration of RAS regulators might lead to less scar formation and inflammation in the last phase of wound closure. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2008-2835 2008-4625 |
DOI: | 10.18502/ajmb.v16i3.15740 |