A Lagrangian description of the higher-order Painlevé equations

We derive the Lagrangians of the higher-order Painlevé equations using Jacobi’s last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlevé test and satisfy the conditions stated by Juráš, thus allowing for a Lagrangian...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics Vol. 52; no. 5; pp. 746 - 755
Main Authors: Ghose Choudhury, A., Guha, Partha, Kudryashov, N. A.
Format: Journal Article
Language:English
Published: Dordrecht SP MAIK Nauka/Interperiodica 01-05-2012
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We derive the Lagrangians of the higher-order Painlevé equations using Jacobi’s last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlevé test and satisfy the conditions stated by Juráš, thus allowing for a Lagrangian description.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542512050089