Fully 2D Materials‐Based Resistive Switching Circuits for Advanced Data Encryption

Data encryption is an essential building block in modern electronic systems to prevent spying and hacking. Every day more and more objects produce electronic data, and this needs to be encrypted before being transmitted. Hence, designing devices, circuits, and systems for data encryption that can be...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 34; no. 41
Main Authors: Han, Tingting, Aguirre, Fernando, Zhu, Kaichen, Yuan, Bin, Pazos, Sebastian, Zhang, Nan, Wang, Sui‐Dong, Li, Shaojuan, Lanza, Mario
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Data encryption is an essential building block in modern electronic systems to prevent spying and hacking. Every day more and more objects produce electronic data, and this needs to be encrypted before being transmitted. Hence, designing devices, circuits, and systems for data encryption that can be integrated in all kinds of objects and that consume low amounts of energy is highly necessary. Here, this work reports the fabrication of flexible and transparent electronic circuits consisting of devices that exhibit threshold‐type resistive switching with a high degree of stochasticity. The cycle‐to‐cycle variability of switching voltages and state currents is significant but confined within a well‐defined range, which is consistent across multiple devices. This allows to design an efficient protocol for true random number generation. The circuits are fabricated with only synthetic 2D materials, can be fabricated in a scalable manner, and can be integrated in any object. Flexible and transparent fully 2D materials based memristors exhibit reliable threshold resistive switching behavior with a high degree of stochasticity. A true random number generator circuit for advanced data encryption can be developed using the Graphene/hexagonal boron nitride/Graphene devices with high cycle‐to‐cycle variability of switching voltages and state currents as entropy source.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202403029