Fluorescence anisotropy and light-scattering studies of the interaction of insulin with liposomes
The interaction between zinc-stabilized insulin and lecithin liposomal membranes was studied using DPH fluorescence anisotropy and light-scattering techniques. To ascertain a possible influence of a charge on the insulin molecule, experiments were performed at pH 4.5 (insulin possesses a positive ch...
Saved in:
Published in: | Journal of fluorescence Vol. 3; no. 4; pp. 215 - 217 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
01-12-1993
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interaction between zinc-stabilized insulin and lecithin liposomal membranes was studied using DPH fluorescence anisotropy and light-scattering techniques. To ascertain a possible influence of a charge on the insulin molecule, experiments were performed at pH 4.5 (insulin possesses a positive charge) and at pH 7.4 (the charge of insulin is negative). Measurements at pH 4.5 revealed significant changes in scattered light intensity induced by the addition of insulin to lecithin liposomes. With increasing time of storage of liposomes the insulin effect became faster and more pronounced. At pH 7.4, significant changes in scattered light were registered only in the case of liposomes stored for 5 days. In these liposomes a peroxidation process of lecithin was revealed. No significant changes induced by insulin were observed in DPH fluorescence anisotropy either at pH 4.5 or at pH 7.4, which suggested the absence of an interaction of insulin with the hycrophobic core of liposomes. Thus, the observed changes in scattered light could be interpreted in terms of the insulin association to the liposomal surface in the case of phospholipid peroxidation and/or acidic pH. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1053-0509 1573-4994 |
DOI: | 10.1007/BF00865264 |