Two-dimensional detailed numerical simulation of ammonia/hydrogen/air detonation: hydrogen concentration effects and transverse detonation wave structure
Numerical simulations on ammonia/hydrogen/air detonation are performed using a detailed reaction model to investigate the cellular instability and detonation dynamics as a function of hydrogen content. The UT-LCS model that includes 32 species and 213 elementary reactions is used in the present simu...
Saved in:
Published in: | Shock waves Vol. 34; no. 2; pp. 139 - 154 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01-04-2024
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical simulations on ammonia/hydrogen/air detonation are performed using a detailed reaction model to investigate the cellular instability and detonation dynamics as a function of hydrogen content. The UT-LCS model that includes 32 species and 213 elementary reactions is used in the present simulations. The fifth-order target compact nonlinear scheme captured the unstable detonation dynamics and the complicated flow structure including the propagation of a sub-transverse wave. The simulation performed with different hydrogen dilutions shows that the detonation propagates at the Chapman–Jouguet velocity for all cases, and the cell size for the ammonia/hydrogen mixing ratio
α
=
0.3
becomes approximately 10 times larger than that for
α
=
1.0
(hydrogen/air mixture). A transverse detonation produces a finescale cellular structure on the computed maximum pressure history. This complex shock formation is similar to those of a spinning detonation and two-dimensional propane/oxygen detonation. The cellular irregularity increases with decreasing hydrogen content because ammonia destabilizes the detonation cellular structure with a reduced activation energy of more than approximately 8. |
---|---|
ISSN: | 0938-1287 1432-2153 |
DOI: | 10.1007/s00193-024-01181-6 |