Differences in the functional responses of two cell lines each expressing Pi-hydrolysis-coupled muscarinic receptors

Fluorescent oxonol dyes were used to measure changes in the membrane potential of two different cell lines each expressing Pi-hydrolysis coupled muscarinic receptors. Both SK-N-SH human neuroblastoma cells and m1-transfected A9 L cells express muscarinic receptors which, when stimulated, elicit a la...

Full description

Saved in:
Bibliographic Details
Published in:Neurochemical research Vol. 17; no. 4; pp. 375 - 379
Main Authors: Baumgold, J, Paek, R
Format: Journal Article
Language:English
Published: United States 01-04-1992
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluorescent oxonol dyes were used to measure changes in the membrane potential of two different cell lines each expressing Pi-hydrolysis coupled muscarinic receptors. Both SK-N-SH human neuroblastoma cells and m1-transfected A9 L cells express muscarinic receptors which, when stimulated, elicit a large increase in intracellular calcium, and release of inositol phosphates. Despite the similarity in this second-messenger response, muscarinic stimulation resulted in a hyperpolarization in the transfected A9 L cells whereas a small depolarization was observed in the neuroblastoma cells. The carbachol-mediated hyperpolarization of the transfected A9 L cells could be mimicked by increasing intracellular calcium with the ionophore A23187, suggesting that it may be mediated by calcium-activated potassium channels. Exposure of SK-N-SH cells to A23187, on the other hand, had no effect on the membrane potential. These studies demonstrate that the activation of a second messenger system does not solely dictate the electrophysiological response of a cell, but that other factors such as the expression of ion-channels is critical in the determination of that response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0364-3190
1573-6903
DOI:10.1007/BF00974580