Optimal Exploration–Exploitation in a Multi-armed Bandit Problem with Non-stationary Rewards
In a multi-armed bandit problem, a gambler needs to choose at each round one of K arms, each characterized by an unknown reward distribution. The objective is to maximize cumulative expected earnings over a planning horizon of length T, and performance is measured in terms of regret relative to a (s...
Saved in:
Published in: | Stochastic systems Vol. 9; no. 4; pp. 319 - 337 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
01-12-2019
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a multi-armed bandit problem, a gambler needs to choose at each round one of K arms, each characterized by an unknown reward distribution. The objective is to maximize cumulative expected earnings over a planning horizon of length T, and performance is measured in terms of regret relative to a (static) oracle that knows the identity of the best arm a priori. This problem has been studied extensively when the reward distributions do not change over time, and uncertainty essentially amounts to identifying the optimal arm. We complement this literature by developing a flexible non-parametric model for temporal uncertainty in the rewards. The extent of temporal uncertainty is measured via the cumulative mean change in the rewards over the horizon, a metric we refer to as temporal variation, and regret is measured relative to a (dynamic) oracle that plays the point-wise optimal action at each period. Assuming that nature can choose any sequence of mean rewards such that their temporal variation does not exceed V (a temporal uncertainty budget), we characterize the complexity of this problem via the minimax regret, which depends on V (the hardness of the problem), the horizon length T, and the number of arms K. |
---|---|
ISSN: | 1946-5238 1946-5238 |
DOI: | 10.1287/stsy.2019.0033 |