Effect of interfacial bonding on the low velocity impact performance of jute fibre/epoxy polymer composites

This research aimed to analyze the low-velocity impact on jute/epoxy polymer samples and used their fractured samples for computer tomographic (CT) analysis for predicting the impact damage areas developed on jute/epoxy polymer by using its impact images. The computer tomography analysis was perform...

Full description

Saved in:
Bibliographic Details
Published in:International journal of adhesion and adhesives Vol. 135; p. 103833
Main Authors: Prabhakar, M. Manoj, Rajini, N., Mayandi, K., Ayrilmis, Nadir, Abdullah, Mahmood M.S., Mohammad, Faruq, Krishnan, Kumar, Soleiman, Ahmed A.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-12-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research aimed to analyze the low-velocity impact on jute/epoxy polymer samples and used their fractured samples for computer tomographic (CT) analysis for predicting the impact damage areas developed on jute/epoxy polymer by using its impact images. The computer tomography analysis was performed with two different thicknesses of natural fabric composites. Initially, this developed the jute/epoxy polymer composites using Compression molding techniques with different thickness and these fabricated samples undergoes to analyzed the low-velocity impact strength with an automated data acquisition system on different thicknesses of jute fabric-reinforced polymer composite materials. The fabricated composite plates were tested under the low-velocity impact testing method with different loading conditions. The higher impact strength was observed on the 6 mm thickness of the plate. The impact analysis on laminate materials is performed with different energy levels on the same thickness of the plate individually. Among various energy absorption tests, the 10 J created more damage on the 3 mm thick plate and 15 J created more damage on the 6 mm thick plate. After the impact testing, the samples were analyzed in the damaged areas using CT scanning systems. Based on this analysis, the fabricated materials were best-suited for lightweight application areas.
ISSN:0143-7496
DOI:10.1016/j.ijadhadh.2024.103833