Assessment of the effect of sodium tetraborate on oxidative stress, inflammation, and apoptosis in lead-induced nephrotoxicity
Exposure to Pb, a toxic heavy metal, is a risk factor for renal damage. Borax, an essential trace element in cellular metabolism, is a naturally occurring compound found in many foods. This study investigated the effects of sodium tetraborate (ST), a source of borax, on renal oxidative stress and in...
Saved in:
Published in: | Drug and chemical toxicology (New York, N.Y. 1978) pp. 1 - 13 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
28-05-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exposure to Pb, a toxic heavy metal, is a risk factor for renal damage. Borax, an essential trace element in cellular metabolism, is a naturally occurring compound found in many foods. This study investigated the effects of sodium tetraborate (ST), a source of borax, on renal oxidative stress and inflammation in rats exposed to Pb. Wistar Albino rats (n = 24) were divided into four groups: Control (0.5 mL, i.p. isotonic), Pb (50 mg/kg/day/i.p.), ST (4.0 mg/kg/day/oral), and Pb + ST groups. At the end of the five-day experimental period, kidney tissue samples were obtained and analyzed. Histopathologically, the Pb-induced damage observed in the Pb group improved in the Pb + ST group. Immunohistochemically, Pb administration increased the expression of inducible nitric oxide synthase, cyclooxygenase-2, and caspase-3. When evaluated biochemically, Pb application inhibited catalase and glutathione peroxidase (GSH-Px) enzyme activities and activated superoxide dismutase enzyme activity. An increase in malondialdehyde levels was considered an indicator of damage. ST application increases glutathione peroxidase enzyme activity and decreased malondialdehyde levels. These results indicate that ST might play a protective role against Pb-induced renal damage via the upregulation of renal tissue antioxidants and cyclooxygenase-2, inducible nitric oxide synthase, and caspase-3 immunoexpression. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0148-0545 1525-6014 |
DOI: | 10.1080/01480545.2024.2358067 |