A comparison of the quality of UHT milk and its plant-based analogs
The aim of this study was to compare selected physical (density) and physicochemical (color, pH, titratable acidity) properties and the fatty acid profile of dairy UHT milk and its plant-based analogs, i.e., almond, soy, rice, oat, and coconut beverages. Ten products of each type were analyzed in ea...
Saved in:
Published in: | Journal of dairy science |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
02-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study was to compare selected physical (density) and physicochemical (color, pH, titratable acidity) properties and the fatty acid profile of dairy UHT milk and its plant-based analogs, i.e., almond, soy, rice, oat, and coconut beverages. Ten products of each type were analyzed in each group. UHT milk was characterized by higher values of color lightness (L*) and titratable acidity than all plant-based milk alternatives, higher yellowness (b*) than rice drink, higher density than almond drink, and higher pH than rice and coconut drinks. In comparison with UHT milk, all plant-based beverages were characterized by higher redness (a*), soy drink was characterized by higher values of b* and chroma (C*), and almond and soy drinks had higher pH values. In the group of non-dairy beverages, the values of b* and C* were highest in soy drink, and the value of a* was highest in almond drink. Almond drink had the highest pH value, and soy and coconut drinks had the highest titratable acidity. Rice drink had higher density than oat, soy and almond drinks. The indicators characterizing the nutritional value of fat were considerably lower in coconut drink and dairy milk than in the remaining products. The values of UFA/SFA, MUFA/SFA, and DFA/OFA ratios and the indicator of nutritional value were highest in rice drink. The PUFA/SFA ratio and the total content of EFAs were highest in soy drink, and the n-6/n-3 PUFA ratio was highest in almond drink. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-0302 1525-3198 1525-3198 |
DOI: | 10.3168/jds.2024-25098 |