End control damping algorithm for a stabilized gun turret system for the satisfaction of the collision avoidance requirement

This paper presents a collision avoidance algorithm for stabilized gun turrets and its real-time implementation. With the help of new collision avoidance algorithm, all types of turrets can be driven more efficiently and safely according to the specified speed, acceleration and jerk limits. Even in...

Full description

Saved in:
Bibliographic Details
Published in:Robotics and autonomous systems Vol. 143; p. 103827
Main Authors: Yerlikaya, Ümit, Balkan, R. Tuna
Format: Journal Article
Language:English
Published: Elsevier B.V 01-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a collision avoidance algorithm for stabilized gun turrets and its real-time implementation. With the help of new collision avoidance algorithm, all types of turrets can be driven more efficiently and safely according to the specified speed, acceleration and jerk limits. Even in situations such as avoiding obstacles, deceleration/acceleration, if the user issues new commands which does not cause a collision, the algorithm starts to apply the new commands providing flexibility to the user. Since all possible worst scenarios are examined one by one, it is guaranteed that the algorithm provides collision free motion in both simulations and real-time tests. A configuration space where worst scenarios can occur is created for the performance measurement of the algorithm, and the same space is used in all tests. By giving different speed commands in the specified configuration space, the performance of the algorithm at different speeds is observed on the stabilized gun turret. For the measurement of the performance under the noisy speed commands, a custom noisy speed command of about 1000 s is created and both simulation and real-time tests are performed. As a result of these tests, it is shown that there is no collision. Finally, by adding cascade position control loop, the departure from the starting point to the desired target point is achieved without any collision. The most important feature that distinguishes this algorithm from others is both speed and position can be controlled and during transition phase, the target point can be changed instantly. In addition, no target position is required for the system to move collision-free, only axis speed commands are sufficient. Since the algorithm does not intervene in the speed and torque loops in contrast to potential field-based methods, it can be added to ready-to-use systems by manipulating only the speed references. •A novel collision avoidance algorithm for gun turrets is created.•No need to specifying any target position to move the system without collision.•The system acts in compliance with all speed, acceleration and jerk limits.•By adding cascade position loop, it can be used as global path planning algorithm.•The algorithm does not intervene in the speed and torque.
ISSN:0921-8890
1872-793X
DOI:10.1016/j.robot.2021.103827