Automated segmentation of brain metastases with deep learning: a multi-center, randomized crossover, multi-reader evaluation study

Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation. A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced M...

Full description

Saved in:
Bibliographic Details
Published in:Neuro-oncology (Charlottesville, Va.) Vol. 26; no. 11; pp. 2140 - 2151
Main Authors: Luo, Xiao, Yang, Yadi, Yin, Shaohan, Li, Hui, Shao, Ying, Zheng, Dechun, Li, Xinchun, Li, Jianpeng, Fan, Weixiong, Li, Jing, Ban, Xiaohua, Lian, Shanshan, Zhang, Yun, Yang, Qiuxia, Zhang, Weijing, Zhang, Cheng, Ma, Lidi, Luo, Yingwei, Zhou, Fan, Wang, Shiyuan, Lin, Cuiping, Li, Jiao, Luo, Ma, He, Jianxun, Xu, Guixiao, Gao, Yaozong, Shen, Dinggang, Sun, Ying, Mou, Yonggao, Zhang, Rong, Xie, Chuanmiao
Format: Journal Article
Language:English
Published: England 04-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation. A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10,338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at five centers. Five radiology residents and five attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared. The BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (p = 0.67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (p < 0.001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs. 0.03 [0.03-0.03]; p < 0.001), but a similar time reduction (reduced median time, 44% [40-47%] vs. 40% [37-44%]; p = 0.92) with BMSS assistance. The BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice.
AbstractList Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation.BACKGROUNDArtificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation.A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at 5 centers. Five radiology residents and 5 attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared.METHODSA deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at 5 centers. Five radiology residents and 5 attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared.The BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (P = .67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (P < .001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs 0.03 [0.03-0.03]; P < .001), but a similar time reduction (reduced median time, 44% [40-47%] vs 40% [37-44%]; P = .92) with BMSS assistance.RESULTSThe BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (P = .67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (P < .001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs 0.03 [0.03-0.03]; P < .001), but a similar time reduction (reduced median time, 44% [40-47%] vs 40% [37-44%]; P = .92) with BMSS assistance.The BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice.CONCLUSIONSThe BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice.
Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation. A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10,338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at five centers. Five radiology residents and five attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared. The BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (p = 0.67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (p < 0.001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs. 0.03 [0.03-0.03]; p < 0.001), but a similar time reduction (reduced median time, 44% [40-47%] vs. 40% [37-44%]; p = 0.92) with BMSS assistance. The BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice.
Author Sun, Ying
Luo, Yingwei
Shao, Ying
Zhang, Cheng
Lian, Shanshan
Wang, Shiyuan
Fan, Weixiong
Li, Jianpeng
Yin, Shaohan
Xu, Guixiao
Ban, Xiaohua
Luo, Xiao
Yang, Yadi
Zhang, Rong
Li, Jiao
Lin, Cuiping
Li, Hui
Li, Jing
Zheng, Dechun
He, Jianxun
Xie, Chuanmiao
Zhang, Yun
Li, Xinchun
Zhou, Fan
Ma, Lidi
Shen, Dinggang
Yang, Qiuxia
Mou, Yonggao
Zhang, Weijing
Luo, Ma
Gao, Yaozong
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0000-0001-5864-0279
  surname: Luo
  fullname: Luo, Xiao
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 2
  givenname: Yadi
  surname: Yang
  fullname: Yang, Yadi
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 3
  givenname: Shaohan
  surname: Yin
  fullname: Yin, Shaohan
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 4
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 5
  givenname: Ying
  surname: Shao
  fullname: Shao, Ying
  organization: R&D department, Shanghai United Imaging Intelligence Co., Ltd
– sequence: 6
  givenname: Dechun
  surname: Zheng
  fullname: Zheng, Dechun
  organization: Department of Radiology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital
– sequence: 7
  givenname: Xinchun
  surname: Li
  fullname: Li, Xinchun
  organization: Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University
– sequence: 8
  givenname: Jianpeng
  surname: Li
  fullname: Li, Jianpeng
  organization: Department Of Radiology, Affiliated Dongguan Hospital, Southern Medical University
– sequence: 9
  givenname: Weixiong
  surname: Fan
  fullname: Fan, Weixiong
  organization: Department of Department of Magnetic Resonance, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital
– sequence: 10
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 11
  givenname: Xiaohua
  surname: Ban
  fullname: Ban, Xiaohua
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 12
  givenname: Shanshan
  surname: Lian
  fullname: Lian, Shanshan
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 13
  givenname: Yun
  surname: Zhang
  fullname: Zhang, Yun
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 14
  givenname: Qiuxia
  surname: Yang
  fullname: Yang, Qiuxia
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 15
  givenname: Weijing
  surname: Zhang
  fullname: Zhang, Weijing
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 16
  givenname: Cheng
  surname: Zhang
  fullname: Zhang, Cheng
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 17
  givenname: Lidi
  orcidid: 0000-0003-0221-6529
  surname: Ma
  fullname: Ma, Lidi
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 18
  givenname: Yingwei
  surname: Luo
  fullname: Luo, Yingwei
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 19
  givenname: Fan
  surname: Zhou
  fullname: Zhou, Fan
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 20
  givenname: Shiyuan
  surname: Wang
  fullname: Wang, Shiyuan
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 21
  givenname: Cuiping
  surname: Lin
  fullname: Lin, Cuiping
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 22
  givenname: Jiao
  surname: Li
  fullname: Li, Jiao
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 23
  givenname: Ma
  surname: Luo
  fullname: Luo, Ma
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 24
  givenname: Jianxun
  surname: He
  fullname: He, Jianxun
  organization: Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University
– sequence: 25
  givenname: Guixiao
  surname: Xu
  fullname: Xu, Guixiao
  organization: State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center
– sequence: 26
  givenname: Yaozong
  orcidid: 0000-0002-7547-5209
  surname: Gao
  fullname: Gao, Yaozong
  organization: R&D department, Shanghai United Imaging Intelligence Co., Ltd
– sequence: 27
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  organization: School of Biomedical Engineering, ShanghaiTech University
– sequence: 28
  givenname: Ying
  orcidid: 0000-0002-4630-9404
  surname: Sun
  fullname: Sun, Ying
  organization: Department of Radiation Oncology, Sun Yat-Sen University Cancer Center
– sequence: 29
  givenname: Yonggao
  surname: Mou
  fullname: Mou, Yonggao
  organization: Department of Neurosurgery, Sun Yat-Sen University Cancer Center
– sequence: 30
  givenname: Rong
  orcidid: 0000-0003-1188-0640
  surname: Zhang
  fullname: Zhang, Rong
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
– sequence: 31
  givenname: Chuanmiao
  orcidid: 0000-0001-8533-623X
  surname: Xie
  fullname: Xie, Chuanmiao
  organization: Department of Radiology, Sun Yat-sen University Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38991556$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1LxDAQxYMofl89So4erJtpNm3qTcQvWPCi5zKbTrTSJmuSKnr0L7faVRiYYXjvDfPbY5vOO2LsCMQZiErOHA3emZnzSAByg-2CymWmdFFs_s55phWUO2wvxhchclAFbLMdqasKlCp22dfFkHyPiRoe6aknlzC13nFv-TJg63hPCeNYFPl7m555Q7TiHWFwrXs658j7oUttZkYnhVMe0DW-bz_HPBN8jP7tZztpAmFDgdMbdsN0Jaah-ThgWxa7SIfrvs8er68eLm-zxf3N3eXFIjOgRcoKa1UjpDZQSqxQa1VatDAv1RyFwbw0ApSUVpKeW6qWuTUgCbAivYRmjnKfnUy5q-BfB4qp7ttoqOvQkR9iLUVZQZnnEkbp2ST9_SGQrVeh7TF81CDqH-71xL1ecx8Nx-vsYdlT8y__Ay2_AbQZhjU
Cites_doi 10.1093/neuonc/noab101
10.1186/s12880-015-0068-x
10.1093/neuonc/noz234
10.2174/1573405615666190903144419
10.1002/jmri.26766
10.1016/j.ijrobp.2013.09.013
10.1200/JCO.21.02314
10.1016/j.rcl.2021.07.002
10.1016/j.radonc.2020.11.021
10.1038/s41746-021-00398-4
10.1080/10543400701329422
10.1038/s41572-018-0055-y
10.3389/fonc.2021.739639
10.1109/TBME.2011.2122306
10.1136/bmjinnov-2019-000359
10.1109/TMI.2020.3002417
10.1615/CritRevBiomedEng.2021035557
10.1016/j.ijrobp.2021.07.540
10.1093/neuonc/noab071
10.1093/neuonc/noac118
10.1016/S0167-8140(03)00207-X
10.1088/1361-6560/ac1835
10.1016/j.radonc.2020.09.016
10.1016/j.clon.2019.06.015
10.1016/j.ijrobp.2019.06.2543
10.1080/0284186X.2018.1473636
10.1093/neuonc/noac025
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1093/neuonc/noae113
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-5866
EndPage 2151
ExternalDocumentID 10_1093_neuonc_noae113
38991556
Genre Journal Article
GroupedDBID ---
.2P
.I3
.XZ
.ZR
0R~
123
18M
36B
4.4
48X
53G
5WD
70D
AABZA
AACZT
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
ABEJV
ABEUO
ABIXL
ABJNI
ABKDP
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACUFI
ACUTO
ACYHN
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHXPO
AIAGR
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
E3Z
EBS
EE~
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H5~
HAR
HW0
HZ~
IOX
J21
KOP
KQ8
KSI
KSN
MHKGH
N9A
NGC
NOMLY
NOYVH
NPM
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
Q1.
Q5Y
RD5
RHF
ROX
RPM
RUSNO
RW1
RXO
TEORI
TJX
TR2
WOQ
X7H
YAYTL
YKOAZ
YXANX
~91
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c180t-6ff5d038c173a9a8857faf14754a0ca27c01533f3e84fe9b2fc13e1a9e8b1d4a3
ISSN 1522-8517
1523-5866
IngestDate Sat Nov 23 00:25:36 EST 2024
Fri Nov 22 01:25:51 EST 2024
Sat Nov 02 12:30:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords deep learning
multi-reader multi-case
automatic segmentation
MRI
brain metastases
Language English
License The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c180t-6ff5d038c173a9a8857faf14754a0ca27c01533f3e84fe9b2fc13e1a9e8b1d4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0221-6529
0000-0001-5864-0279
0000-0001-8533-623X
0000-0002-4630-9404
0000-0003-1188-0640
0000-0002-7547-5209
PMID 38991556
PQID 3079172231
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_3079172231
crossref_primary_10_1093_neuonc_noae113
pubmed_primary_38991556
PublicationCentury 2000
PublicationDate 20241104
PublicationDateYYYYMMDD 2024-11-04
PublicationDate_xml – month: 11
  year: 2024
  text: 20241104
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neuro-oncology (Charlottesville, Va.)
PublicationTitleAlternate Neuro Oncol
PublicationYear 2024
References Aizer (2024110422230707800_CIT0005) 2022; 24
Sandström (2024110422230707800_CIT0007) 2018; 57
Lu (2024110422230707800_CIT0025) 2021; 23
Yoo (2024110422230707800_CIT0015) 2021; 111
Administration FaD (2024110422230707800_CIT0027)
Shal (2024110422230707800_CIT0010) 2021; 49
Noël (2024110422230707800_CIT0030) 2003; 68
Grovik (2024110422230707800_CIT0014) 2021; 4
Hsu (2024110422230707800_CIT0016) 2021; 66
Yin (2024110422230707800_CIT0020) 2022; 24
Cho (2024110422230707800_CIT0012) 2021; 11
Nguyen (2024110422230707800_CIT0003) 2019; 105
Yousefi (2024110422230707800_CIT0022) 2012; 59
Kitamura (2024110422230707800_CIT0026) 2021; 59
Lamba (2024110422230707800_CIT0002) 2021; 23
Bland (2024110422230707800_CIT0024) 2007; 17
Eelbode (2024110422230707800_CIT0028) 2020; 39
Grovik (2024110422230707800_CIT0011) 2020; 51
Vogelbaum (2024110422230707800_CIT0004) 2022; 40
Han (2024110422230707800_CIT0019) 2019
Growcott (2024110422230707800_CIT0006) 2020; 32
Taha (2024110422230707800_CIT0023) 2015; 15
Stanley (2024110422230707800_CIT0008) 2013; 87
Xue (2024110422230707800_CIT0013) 2020; 22
Dupic (2024110422230707800_CIT0029) 2021; 154
Seneviratne (2024110422230707800_CIT0018) 2020; 6
PyTorch (2024110422230707800_CIT0021) 2021
Achrol (2024110422230707800_CIT0001) 2019; 5
Bajaj (2024110422230707800_CIT0009) 2020; 16
Zhou (2024110422230707800_CIT0017) 2020; 153
References_xml – volume: 23
  start-page: 1447
  issue: 9
  year: 2021
  ident: 2024110422230707800_CIT0002
  article-title: Epidemiology of brain metastases and leptomeningeal disease
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noab101
  contributor:
    fullname: Lamba
– volume: 15
  start-page: 29
  issue: 1
  year: 2015
  ident: 2024110422230707800_CIT0023
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med Imaging.
  doi: 10.1186/s12880-015-0068-x
  contributor:
    fullname: Taha
– volume: 22
  start-page: 505
  issue: 4
  year: 2020
  ident: 2024110422230707800_CIT0013
  article-title: Deep learning-based detection and segmentation-assisted management of brain metastases
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz234
  contributor:
    fullname: Xue
– volume: 16
  start-page: 937
  issue: 8
  year: 2020
  ident: 2024110422230707800_CIT0009
  article-title: A review of various machine learning techniques for brain tumor detection from MRI images
  publication-title: Curr Med Imaging
  doi: 10.2174/1573405615666190903144419
  contributor:
    fullname: Bajaj
– volume: 51
  start-page: 175
  issue: 1
  year: 2020
  ident: 2024110422230707800_CIT0011
  article-title: Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI
  publication-title: J Magn Reson Imaging.
  doi: 10.1002/jmri.26766
  contributor:
    fullname: Grovik
– volume: 87
  start-page: 924
  issue: 5
  year: 2013
  ident: 2024110422230707800_CIT0008
  article-title: The effect of contouring variability on dosimetric parameters for brain metastases treated with stereotactic radiosurgery
  publication-title: Int J Radiat Oncol Biol Phys.
  doi: 10.1016/j.ijrobp.2013.09.013
  contributor:
    fullname: Stanley
– volume: 40
  start-page: 492
  issue: 5
  year: 2022
  ident: 2024110422230707800_CIT0004
  article-title: Treatment for brain metastases: ASCO-SNO-ASTRO guideline
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.21.02314
  contributor:
    fullname: Vogelbaum
– volume: 59
  start-page: 1003
  issue: 6
  year: 2021
  ident: 2024110422230707800_CIT0026
  article-title: Clinical artificial intelligence applications in radiology: neuro
  publication-title: Radiol Clin North Am.
  doi: 10.1016/j.rcl.2021.07.002
  contributor:
    fullname: Kitamura
– volume: 154
  start-page: 260
  year: 2021
  ident: 2024110422230707800_CIT0029
  article-title: Significant correlation between gross tumor volume (GTV) D98% and local control in multifraction stereotactic radiotherapy (MF-SRT) for unresected brain metastases
  publication-title: Radiother Oncol: J Eur Soc Therap Radiol Oncol
  doi: 10.1016/j.radonc.2020.11.021
  contributor:
    fullname: Dupic
– volume: 4
  start-page: 33
  issue: 1
  year: 2021
  ident: 2024110422230707800_CIT0014
  article-title: Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-021-00398-4
  contributor:
    fullname: Grovik
– volume: 17
  start-page: 571
  issue: 4
  year: 2007
  ident: 2024110422230707800_CIT0024
  article-title: Agreement between methods of measurement with multiple observations per individual
  publication-title: J Biopharm Stat.
  doi: 10.1080/10543400701329422
  contributor:
    fullname: Bland
– year: 2021
  ident: 2024110422230707800_CIT0021
  contributor:
    fullname: PyTorch
– volume-title: Clinical performance assessment: considerations for computer-assisted detection devices applied to radiology images and radiology device data in premarket notification (510(k)) Submissions
  ident: 2024110422230707800_CIT0027
  contributor:
    fullname: Administration FaD
– volume: 5
  start-page: 5
  issue: 1
  year: 2019
  ident: 2024110422230707800_CIT0001
  article-title: Brain metastases
  publication-title: Nat Rev Dis Primers.
  doi: 10.1038/s41572-018-0055-y
  contributor:
    fullname: Achrol
– volume: 11
  start-page: 739639
  year: 2021
  ident: 2024110422230707800_CIT0012
  article-title: Deep learning-based computer-aided detection system for automated treatment response assessment of brain metastases on 3D MRI
  publication-title: Front Oncol.
  doi: 10.3389/fonc.2021.739639
  contributor:
    fullname: Cho
– volume: 59
  start-page: 1808
  issue: 7
  year: 2012
  ident: 2024110422230707800_CIT0022
  article-title: Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.2011.2122306
  contributor:
    fullname: Yousefi
– volume: 6
  start-page: 45
  issue: 2
  year: 2020
  ident: 2024110422230707800_CIT0018
  article-title: Bridging the implementation gap of machine learning in healthcare
  publication-title: BMJ Innov
  doi: 10.1136/bmjinnov-2019-000359
  contributor:
    fullname: Seneviratne
– volume: 39
  start-page: 3679
  issue: 11
  year: 2020
  ident: 2024110422230707800_CIT0028
  article-title: Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index
  publication-title: IEEE Trans Med Imaging.
  doi: 10.1109/TMI.2020.3002417
  contributor:
    fullname: Eelbode
– volume: 49
  start-page: 77
  issue: 1
  year: 2021
  ident: 2024110422230707800_CIT0010
  article-title: Evolution of deep learning algorithms for MRI-based brain tumor image segmentation
  publication-title: Crit Rev Biomed Eng.
  doi: 10.1615/CritRevBiomedEng.2021035557
  contributor:
    fullname: Shal
– volume: 111
  start-page: e121
  issue: 3
  year: 2021
  ident: 2024110422230707800_CIT0015
  article-title: Deep learning-based automatic detection and segmentation of gross tumor for stereotactic ablative radiotherapy in small-volume brain metastases
  publication-title: Int J Radiat Oncol Biol Phys.
  doi: 10.1016/j.ijrobp.2021.07.540
  contributor:
    fullname: Yoo
– volume: 23
  start-page: 1560
  issue: 9
  year: 2021
  ident: 2024110422230707800_CIT0025
  article-title: Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noab071
  contributor:
    fullname: Lu
– volume: 24
  start-page: 1613
  issue: 10
  year: 2022
  ident: 2024110422230707800_CIT0005
  article-title: Brain metastases: a Society for Neuro-Oncology (SNO) consensus review on current management and future directions
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noac118
  contributor:
    fullname: Aizer
– volume: 68
  start-page: 15
  issue: 1
  year: 2003
  ident: 2024110422230707800_CIT0030
  article-title: Radiosurgery for brain metastasis: impact of CTV on local control
  publication-title: Radiother Oncol.
  doi: 10.1016/S0167-8140(03)00207-X
  contributor:
    fullname: Noël
– volume: 66
  start-page: 175014
  issue: 17
  year: 2021
  ident: 2024110422230707800_CIT0016
  article-title: Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images
  publication-title: Phys Med Biol.
  doi: 10.1088/1361-6560/ac1835
  contributor:
    fullname: Hsu
– volume: 153
  start-page: 189
  year: 2020
  ident: 2024110422230707800_CIT0017
  article-title: MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging
  publication-title: Radiother Oncol: J Eur Soc Ther Radiol Oncol
  doi: 10.1016/j.radonc.2020.09.016
  contributor:
    fullname: Zhou
– year: 2019
  ident: 2024110422230707800_CIT0019
  article-title: Large-scale Evaluation of V-Net for Organ Segmentation in Image Guided Radiation Therapy
  contributor:
    fullname: Han
– volume: 32
  start-page: 13
  issue: 1
  year: 2020
  ident: 2024110422230707800_CIT0006
  article-title: Inter-observer variability in target volume delineations of benign and metastatic brain tumours for stereotactic radiosurgery: results of a national quality assurance programme
  publication-title: Clin Oncol (R Coll Radiol).
  doi: 10.1016/j.clon.2019.06.015
  contributor:
    fullname: Growcott
– volume: 105
  start-page: 394
  issue: 2
  year: 2019
  ident: 2024110422230707800_CIT0003
  article-title: Single-fraction stereotactic radiosurgery versus hippocampal-avoidance whole brain radiation therapy for patients with 10 to 30 brain metastases: a dosimetric analysis
  publication-title: Int J Radiat Oncol Biol Phys.
  doi: 10.1016/j.ijrobp.2019.06.2543
  contributor:
    fullname: Nguyen
– volume: 57
  start-page: 1515
  issue: 11
  year: 2018
  ident: 2024110422230707800_CIT0007
  article-title: Multi-institutional study of the variability in target delineation for six targets commonly treated with radiosurgery
  publication-title: Acta Oncol (Stockholm, Sweden)
  doi: 10.1080/0284186X.2018.1473636
  contributor:
    fullname: Sandström
– volume: 24
  start-page: 1559
  issue: 9
  year: 2022
  ident: 2024110422230707800_CIT0020
  article-title: Development and validation of a deep-learning model for detecting brain metastases on 3D post-contrast MRI: a multi-center multi-reader evaluation study
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noac025
  contributor:
    fullname: Yin
SSID ssj0021561
Score 2.468705
Snippet Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 2140
Title Automated segmentation of brain metastases with deep learning: a multi-center, randomized crossover, multi-reader evaluation study
URI https://www.ncbi.nlm.nih.gov/pubmed/38991556
https://www.proquest.com/docview/3079172231
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2rYS4IMqrSykyEhKXhubhrJ3eFtiqh6Ucuq2WU2QndrtIjavdDYce-eUdP_JYAVI5cIkiK3F2PZ_GM-OZbxB6T2kxKmlZBqk0oRvCRMCTNAsIFWC-x5QKS9d0ek7P5uzLhEwGg6YFVzf2XyUNYyBrUzn7D9JuJ4UBuAeZwxWkDtcHyX1crzVYoWBHruTVja8ssjahMN0gTMtoDhbhSvq6tlLK26Z3xJWrU7dJhoFJ23TyhO2s1DeLO5jTbqpN1qd7bmmToXu04T3K2h8NN1S91IGuCkf4ZA6OzSm_XoOd-9MUI9psW_6xF5aY1jaGO19w3SomH9r-zstFO-YoEM6vub7uZRe5Vtz1oh_TiIkt7iN9NRwnQcpGniT7D2Ned7tq-waj0YYmdjRQv20Rjj6rkjX8a3OjuYxcOewmG_fZt_zkYjrNZ5P5bAvtxKDIQI_ujD_NLy9blx68X8fI639bSwuaHLkvHPn5N82ev_gy1qaZPUVPvDOCxw5Fu2ggq2fo0VefbvEc_WrBhPtgwlphCybcgQkbMGEDJtyA6RiPcR9Kh7gDEm6BdIj7MMIdjLCF0Qt0cTKZfT4NfNOOoIhYuA5GSqVlmLAiognPOGMpVVxFhKaEhwWPaREaF0MlkhElMxGrIkpkxDPJRFQSnrxE25Wu5B7CXKVKhLEIWRYSFTMuuRCWMzBWSmR0iD40a5rfOm6W3OVUJLlb_dyv_hC9a5Y8B_VpzsR4JXW9ymGLy8CGBy9niF45WbRzGepJ-Nro9QPe3kePOyC_QdvrZS0P0NaqrN96zNwD6euemA
link.rule.ids 315,782,786,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+of+brain+metastases+with+deep+learning%3A+A+multi-center%2C+randomized+crossover%2C+multi-reader+evaluation+study&rft.jtitle=Neuro-oncology+%28Charlottesville%2C+Va.%29&rft.au=Luo%2C+Xiao&rft.au=Yang%2C+Yadi&rft.au=Yin%2C+Shaohan&rft.au=Li%2C+Hui&rft.date=2024-11-04&rft.issn=1523-5866&rft.eissn=1523-5866&rft.volume=26&rft.issue=11&rft.spage=2140&rft_id=info:doi/10.1093%2Fneuonc%2Fnoae113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-8517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-8517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-8517&client=summon