Automated segmentation of brain metastases with deep learning: a multi-center, randomized crossover, multi-reader evaluation study
Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation. A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced M...
Saved in:
Published in: | Neuro-oncology (Charlottesville, Va.) Vol. 26; no. 11; pp. 2140 - 2151 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
04-11-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation.
A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10,338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at five centers. Five radiology residents and five attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared.
The BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (p = 0.67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (p < 0.001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs. 0.03 [0.03-0.03]; p < 0.001), but a similar time reduction (reduced median time, 44% [40-47%] vs. 40% [37-44%]; p = 0.92) with BMSS assistance.
The BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 1522-8517 1523-5866 1523-5866 |
DOI: | 10.1093/neuonc/noae113 |