A review of the potential impacts of coastal mosquito control programs on Australian Stingless Bees (Apidae, Meliponini)-likely exposure pathways and lessons learned from studies on honey bees
The impact of the programmatic use of larvicides for mosquito control on native stingless bees (e.g., Apidae, Meliponini) is a growing concern in Australia due to heightened conservation awareness and the growth of hobbyist stingless bee keeping. In Australia, the two most widely used mosquito larvi...
Saved in:
Published in: | Environmental entomology |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
05-10-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The impact of the programmatic use of larvicides for mosquito control on native stingless bees (e.g., Apidae, Meliponini) is a growing concern in Australia due to heightened conservation awareness and the growth of hobbyist stingless bee keeping. In Australia, the two most widely used mosquito larvicides are the bacterium Bacillus thuringiensis var. israelensis (Bti) and the insect hormone mimic methoprene (as S-methoprene). Each has a unique mode of action that could present a risk to stingless bees and other pollinators. Herein, we review the potential impacts of these larvicides on native Australian bees and conclude that their influence is mitigated by their low recommended field rates, poor environmental persistence, and the seasonal and intermittent nature of mosquito control applications. Moreover, evidence suggests that stingless bees may display a high physiological tolerance to Bti similar to that observed in honey bees (Apis mellifera), whose interactions with B. thuringiensis-based biopesticides are widely reported. In summary, neither Bti or methoprene is likely to pose a significant risk to the health of stingless bees or their nests. However, current knowledge is limited by regulatory testing requirements that only require the use of honey bees as toxicological models. To bridge this gap, we suggest that regulatory testing is expanded to include stingless bees and other nontarget insects. This is imperative for improving our understanding of the potential risks that these and other pesticides may pose to native pollinator conservation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0046-225X 1938-2936 1938-2936 |
DOI: | 10.1093/ee/nvae080 |