Augmentation of Predictive Competence of Non-Small Cell Lung Cancer Datasets through Feature Pre-Processing Techniques
The major Objective of the Study is to augment the predictive analytics of Non-Small Cell Lung Cancer (NSCLC) datasets with Feature Pre-Processing (FPP) technique in three stages viz. Remove base errors with common analytics on emptiness or non-numerical or missing values in the dataset, remove repe...
Saved in:
Published in: | EAI endorsed transactions on pervasive health and technology Vol. 8; no. 5; p. e1 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
20-12-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The major Objective of the Study is to augment the predictive analytics of Non-Small Cell Lung Cancer (NSCLC) datasets with Feature Pre-Processing (FPP) technique in three stages viz. Remove base errors with common analytics on emptiness or non-numerical or missing values in the dataset, remove repeated features through regression analysis and eliminate irrelevant features through clustering methods. The FPP Model is validated using classifiers like simple and complex Tree, Linear and Gaussian SVM, Weighted KNN and Boosted Trees in terms of accuracy, sensitivity, specificity, kappa, positive and negative likelihood. The result showed that the NSCLC dataset formed after FPP outperformed the raw NSCLC dataset in all performance levels and showed good augmentation in predictive analytics of NSCLC datasets. The research proved that preprocessing is essential for better prediction of complex medical datasets. |
---|---|
ISSN: | 2411-7145 2411-7145 |
DOI: | 10.4108/eetpht.v8i5.3169 |