Software Development for the Use of Generalized Parabolic Blending in Data Prediction Processes
Parabolic blending (PB) is one of the important topics in applied mathematics and computer graphics. The use of generalized parabolic blending (GPB) for different scenarios adds flexibility to the polynomial. Overhauser (OVR) elements is a special case in GPB (r=0.5, s=0.5). GPB can also be used in...
Saved in:
Published in: | Sakarya university journal of computer and information sciences Vol. 5; no. 3; pp. 356 - 370 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Sakarya University
31-12-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Parabolic blending (PB) is one of the important topics in applied mathematics and computer graphics. The use of generalized parabolic blending (GPB) for different scenarios adds flexibility to the polynomial. Overhauser (OVR) elements is a special case in GPB (r=0.5, s=0.5). GPB can also be used in estimation. In this study, data obtained from thickness distribution of a 3mm thick high impact polystyrene product after thermoforming using a mold was used for data estimation. For this purpose, software has been developed. The software development steps and formula usages are explained. Using the developed software, polynomials for GPB and default PB (OVR) were created. The data set was compared with the y values produced by the polynomials for certain x values. At the end of the research, it was determined that the results obtained from the GPB were 0.1728 percent more accurate than the data obtained from the PB for the default values. |
---|---|
ISSN: | 2636-8129 2636-8129 |
DOI: | 10.35377/saucis...1122506 |