Chromosome Instability in Carcinomas
In the current carcinogenesis models, the occurrence of increasing mutations and selection mechanisms favoring cell survival and higher proliferation rates are taken into account. Epigenetic mechanisms, among which DNA methylation stands out, also take part in oncogenesis. The characteristic of tumo...
Saved in:
Published in: | International journal of morphology Vol. 24; no. 3; pp. 335 - 338 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English Portuguese |
Published: |
Sociedad Chilena de Anatomía
01-09-2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the current carcinogenesis models, the occurrence of increasing mutations and selection mechanisms favoring cell survival and higher proliferation rates are taken into account. Epigenetic mechanisms, among which DNA methylation stands out, also take part in oncogenesis. The characteristic of tumor cells that allows the increase of mutations is named genetic instability, encompassing two mechanisms: microsatellite instability, characterized by nucleotide alterations with errors in the DNA repair systems; and chromosomal instability, represented by aberrations occurring in large chromosome segments. Carcinomas are characterized by complex cytogenetic alterations and large gene amalgamations. Telomeric alterations, inadequately repaired DNA breaks, and deficiencies in the mitotic spindle checking systems are events capable of generating the chromosomal instability and aneuploidy which characterize more aggressive neoplasias. A better understanding of the chromosomal instability mechanisms can show the way towards a clinical utilization of such information, like developing more adequate therapeutic strategies, targeted at specific sites involved in the malignization process |
---|---|
ISSN: | 0717-9502 0717-9502 |
DOI: | 10.4067/S0717-95022006000400007 |