Enhancement of thermoelectric properties of La-doped SrTiO 3 bulk by introducing nanoscale porosity

Electron-doped SrTiO is a well-known -type thermoelectric material, although the figure of merit of SrTiO is still inferior compared with -type metal oxide-based thermoelectric materials due to its high lattice thermal conductivity. In this study, we have used a different amount of the non-ionic sur...

Full description

Saved in:
Bibliographic Details
Published in:Royal Society open science Vol. 6; no. 10; p. 190870
Main Authors: Ahmed, Al Jumlat, Nazrul Islam, Sheik Md Kazi, Hossain, Ridwone, Kim, Jeonghun, Kim, Minjun, Billah, Motasim, Hossain, Md Shahriar A, Yamauchi, Yusuke, Wang, Xiaolin
Format: Journal Article
Language:English
Published: England 01-10-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electron-doped SrTiO is a well-known -type thermoelectric material, although the figure of merit of SrTiO is still inferior compared with -type metal oxide-based thermoelectric materials due to its high lattice thermal conductivity. In this study, we have used a different amount of the non-ionic surfactant F127 during sample preparation to introduce nanoscale porosities into bulk samples of La-doped SrTiO . It has been observed that the porosities introduced into the bulk sample significantly improve the Seebeck coefficient and reduce the thermal conductivity by the charge carrier and phonon scattering respectively. Therefore, there is an overall enhancement in the power factor (PF) followed by a dimensionless figure of merit ( ) over a wide scale of temperature. The sample 20 at% La-doped SrTiO with 600 mg of F127 surfactant (SLTO 600F127) shows the maximum PF of 1.14 mW m K at 647 K which is 35% higher than the sample without porosity (SLTO 0F127), and the same sample (SLTO 600F127) shows the maximum value of z is 0.32 at 968 K with an average enhancement of 62% in in comparison with the sample without porosity (SLTO 0F127).
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.190870