Graphene oxide, starch, and kraft lignin bio-nanocomposite controlled-release phosphorus fertilizer: Effect on P management and maize growth
This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were...
Saved in:
Published in: | International journal of biological macromolecules Vol. 282; no. Pt 5; p. 137190 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-12-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.137190 |