Dynamic Group Testing to Control and Monitor Disease Progression in a Population

Proactive testing and interventions are crucial for disease containment during a pandemic until widespread vaccination is achieved. However, a key challenge remains: Can we accurately identify all new daily infections with only a fraction of tests needed compared to testing everyone, everyday? Group...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in information theory Vol. 5; pp. 609 - 622
Main Authors: Rajan Srinivasavaradhan, Sundara, Nikolopoulos, Pavlos, Fragouli, Christina, Diggavi, Suhas
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proactive testing and interventions are crucial for disease containment during a pandemic until widespread vaccination is achieved. However, a key challenge remains: Can we accurately identify all new daily infections with only a fraction of tests needed compared to testing everyone, everyday? Group testing reduces the number of tests but overlooks infection dynamics and non i.i.d nature of infections in a community, while on the other hand traditional SIR (Susceptible-Infected-Recovered) models address these dynamics but don't integrate discrete-time testing and interventions. This paper bridges the gap. We propose a "discrete-time SIR stochastic block model" that incorporates group testing and daily interventions, as a discrete counterpart to the well-known continuous-time SIR model that reflects community structure through a specific weighted graph. We analyze the model to determine the minimum number of daily group tests required to identify all infections with vanishing error probability. We find that one can leverage the knowledge of the community and the model to inform nonadaptive group testing algorithms that are order-optimal, and therefore achieve the same performance as complete testing using a much smaller number of tests.
ISSN:2641-8770
2641-8770
DOI:10.1109/JSAIT.2024.3466649