Adaptive Neuro-Fuzzy Voltage Control for LCL-Filter Grid-Connected Converter
Inductance – Capacitance – Inductance (LCL) filter is a very attractive candidate for renewable energy system applications due to its high efficiency. High attenuation of the switching frequency harmonics, small size, low fee, and improving the overall harmonic distortion (THD). This paper presents...
Saved in:
Published in: | Engineering and Technology Journal Vol. 41; no. 2; pp. 316 - 332 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Unviversity of Technology- Iraq
01-02-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inductance – Capacitance – Inductance (LCL) filter is a very attractive candidate for renewable energy system applications due to its high efficiency. High attenuation of the switching frequency harmonics, small size, low fee, and improving the overall harmonic distortion (THD). This paper presents how voltage is affected by increased loads or voltage sag. Therefore it is necessary to control it with certain controllers. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is used as an intelligent controller, the voltage constraint as training data for ANFIS obtained from PI. The filter works in a good connection between the inverter and the grid and rewords unwanted harmonics from using the inverter. The mathematical models for the LCL filter are investigated. The proposed approach shows more effective results than previous performance for voltage controlling and harmonic reduction. It gives overshoot (0.5%), steady state error (0.005), settling time (0.03 sec), rise time (0.005 sec), and improving THD 8.67% to 2.33% by comparing these results of ANFIS respectively with the results of PI which gave(3%),(0.01),(0.2sec)and( 0.02sec). |
---|---|
ISSN: | 1681-6900 2412-0758 |
DOI: | 10.30684/etj.2022.132342.1115 |