Obtaining 20 μm Spatial Resolution with a 2940 nm Laser by IR-MALDESI Mass Spectrometry Imaging

High spatial resolution is a key parameter in mass spectrometry imaging (MSI), enabling a greater understanding of system biology and cellular processes. Using a novel IR laser with good Gaussian beam quality (M2 = 4) coupled with spatial filtering and a reflective objective, 20 μm spatial resolutio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry
Main Authors: Eisenberg, Seth M., Joignant, Alena N., Knizner, Kevan T., Manni, Jeffrey G., Muddiman, David C.
Format: Journal Article
Language:English
Published: 08-11-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High spatial resolution is a key parameter in mass spectrometry imaging (MSI), enabling a greater understanding of system biology and cellular processes. Using a novel IR laser with good Gaussian beam quality (M2 = 4) coupled with spatial filtering and a reflective objective, 20 μm spatial resolution was obtained by IR-MALDESI. The optical train was optimized on burn paper before demonstrating feasibility for imaging of liver tissue. Finally, a mouse brain was analyzed using nested regions of interest at 20 and 140 μm spatial resolution, detecting neurotransmitters and lipids with high spatial resolution on the corpus callosum and surrounding brain tissue.High spatial resolution is a key parameter in mass spectrometry imaging (MSI), enabling a greater understanding of system biology and cellular processes. Using a novel IR laser with good Gaussian beam quality (M2 = 4) coupled with spatial filtering and a reflective objective, 20 μm spatial resolution was obtained by IR-MALDESI. The optical train was optimized on burn paper before demonstrating feasibility for imaging of liver tissue. Finally, a mouse brain was analyzed using nested regions of interest at 20 and 140 μm spatial resolution, detecting neurotransmitters and lipids with high spatial resolution on the corpus callosum and surrounding brain tissue.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1044-0305
1879-1123
1879-1123
DOI:10.1021/jasms.4c00276