Verossimilhança na seleção de modelos para predição espacial
Na modelagem estatística da variabilidade espacial, estimam-se os parâmetros da dependência espacial, que são utilizados na interpolação de valores em locais não amostrados. Para tal, o processo de modelagem deve ser realizado com critérios estatísticos que garantam predições confiáveis e represente...
Saved in:
Published in: | Revista brasileira de ciência do solo Vol. 37; no. 2; pp. 352 - 358 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-04-2013
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Na modelagem estatística da variabilidade espacial, estimam-se os parâmetros da dependência espacial, que são utilizados na interpolação de valores em locais não amostrados. Para tal, o processo de modelagem deve ser realizado com critérios estatísticos que garantam predições confiáveis e representem a real variabilidade local. Este trabalho avaliou diferentes formulações do modelo geoestatístico gaussiano para reconstituir a superfície que representa o fósforo (P) na área, a partir de medições dos teores de P em 48 parcelas experimentais localizadas em Xanxerê, SC, destacando o método utilizado nas análises. A combinação da presença de covariáveis no modelo e a necessidade de transformação para normalidade dos dados definiram quatro alternativas para modelagem. Utilizou-se a função de correlação de Matèrn, avaliada nos valores 0,5; 1,5; e 2,5 para parâmetro de suavidade. Os modelos foram comparados pelo valor maximizado do logaritmo da função de verossimilhança e também por validação cruzada. O modelo selecionado foi o que incorporou a variável resposta transformada, as coordenadas da área como covariáveis e o valor 0,5 para o parâmetro de suavidade. As medidas de validação cruzada pouco acrescentaram aos resultados de comparação por verossimilhança, que evidenciaram que na modelagem geoestatística, o cuidado com observações globais ou locais atípicas, além da seleção com base em diferentes modelos, deve ser o foco para obter resultados compatíveis com a realidade.
Statistical modeling of spatial attributes aims to estimate dependence parameters, used to interpolate values at unsampled locations within the study area. Thus, the modeling process is conducted with some statistical criteria that ensure reliable predictions representing the actual local variability. This study evaluates different formulations of the Gaussian geostatistical model to reconstruct the surface of phosphorus over the area from the available measurements on 48 experimental plots located in Xanxerê/SC with emphasis on the methodological framework. Choices of covariates in the model and for data transformation define four modeling options to be assessed. The Matèrn correlation function was used, evaluated at values 0.5; 1.5 and 2.5 for smoothness parameter. Models were compared by the maximized logarithm of the likelihood function and also by cross validation. The model with transformed response variable, including coordinates of the area as covariates and the value of 0.5 for the smoothness parameter was selected. The cross validation measures did not add relevant information to the likelihood, and the analysis highlights care must be taken with globally or locally atypical data, as well as the need of objective choice based on different candidate models which ought to be the focus of geostatistical modeling to ensure results compatible with reality. |
---|---|
ISSN: | 0100-0683 0100-0683 |
DOI: | 10.1590/S0100-06832013000200006 |