Modal phase-matching in thin-film lithium niobate waveguides for efficient generation of entangled photon pairs
Thin-film lithium niobate (TFLN) waveguides have emerged as a pivotal platform for on-chip spontaneous parametric down-conversion (SPDC), serving as a crucible for the generation of entangled photon pairs. The periodic poling of TFLN, while capable of generating high-efficiency SPDC, demands intrica...
Saved in:
Published in: | Optics express Vol. 32; no. 23; p. 40629 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
04-11-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thin-film lithium niobate (TFLN) waveguides have emerged as a pivotal platform for on-chip spontaneous parametric down-conversion (SPDC), serving as a crucible for the generation of entangled photon pairs. The periodic poling of TFLN, while capable of generating high-efficiency SPDC, demands intricate fabrication processes that can be onerous in terms of scalability and manufacturability. In this work, we introduce a novel approach to the generation of entangled photon pairs via SPDC within TFLN waveguides, harnessing the principles of modal phase-matching (MPM). To address the challenge of efficiently exciting pump light typically in a higher-order mode, we have engineered a mode converter that couples two asymmetrically dimensioned waveguides. This converter adeptly transforms the fundamental mode into a higher-order mode, demonstrating a conversion loss of 1.55 dB at 785 nm with a 3 dB bandwidth exceeding 30 nm. Subsequently, we have showcased the device’s capabilities by characterizing the pair generation rate (PGR), coincidences-to-accidentals ratio (CAR), and spectral profile of the entangled photon source. Our findings present a simplified and versatile method for the on-chip generation of entangled photon sources, which may pave the way for the application in the realms of quantum information processing and communication technologies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.539105 |