Kinome-Wide RNAi Studies in Human Multiple Myeloma Identify a Lymphoid Restricted Kinase GRK6 as a Selectively Vulnerable Target That Regulates STAT3/MCL1

Abstract 601 A paucity of validated kinase targets in human multiple myeloma (MM) has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in MM tumor lines bearing common t(4;14), t(14;16) and t(...

Full description

Saved in:
Bibliographic Details
Published in:Blood Vol. 114; no. 22; p. 601
Main Authors: Tiedemann, Rodger E., Zhu, Yuan Xiao, Schmidt, Jessica, Yin, Hongwei, Que, Quick, Azorsa, David, Perkins, Louise M., Braggio, Esteban, Reeder, Craig B., Fonseca, Rafael, Bergsagel, P. Leif, Mousses, Spyro, Stewart, A. Keith
Format: Journal Article
Language:English
Published: Elsevier Inc 20-11-2009
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract 601 A paucity of validated kinase targets in human multiple myeloma (MM) has delayed clinical deployment of kinase inhibitors in treatment strategies. We therefore conducted a kinome-wide small interfering RNA (siRNA) lethality study in MM tumor lines bearing common t(4;14), t(14;16) and t(11;14) translocations to identify critically vulnerable kinases in MM tumor cells without regard to preconceived mechanistic notions. Primary screening was performed in duplicate using an 1800-oligo siRNA library in a single-siRNA-per-well format. siRNA were transfected at low concentration (13nM) to minimize off-target effects using conditions that resulted in transfection of >95% cells and <5% background cytotoxicity. After 96 hours, viability was measured by ATP-dependent luminescence. Fifteen kinases were consistently vulnerable in MM cells, including AKT1, AK3L1, AURKA, AURKB, CDC2L1, CDK5R2, FES, FLT4, GAK, GRK6, HK1, PKN1, PLK1, SMG1, and TNK2. While several kinases (PLK1, HK1) were equally vulnerable in epithelial cells, others and particularly the G-protein coupled receptor kinase, GRK6, appeared selectively vulnerable in MM. GRK6 inhibition is selectively lethal to KMS11, OPM1, H929, KMS18 and OCI-MY5 myeloma cells and has minimal effect on 293, MCF7, SF767, A375 or A549 epithelial cells. Persistent expression of FLAG-GRK6 via cDNA rescued KMS11 cells from the lethal effect of a 3'UTR-targeted GRK6 siRNA, but not from control siRNA, validating identification of GRK6 as an essential myeloma survival kinase. Furthermore, concordant results were obtained using four different exon-based GRK6 siRNA, all of which induced GRK6 silencing and similar inhibition of KMS11 proliferation and viability. Significantly, GRK6 is ubiquitously expressed in lymphoid tissues and myeloma, but by comparison appears absent or only weakly expressed in most primary human somatic tissues. From co-immunoprecipitation experiments we demonstrate that GRK6 is highly expressed in myeloma cells via direct association with the HSP90 chaperone. Inhibition of HSP90 with geldanamycin blocks GRK6 protein expression. Importantly, direct GRK6 silencing causes rapid and selective suppression of STAT3 phosphorylation that is associated with sustained reductions in total MCL1 protein levels and MCL1 phosphorylation (within 24 hours), providing a potent mechanism for the cytotoxicity of GRK6 inhibition in MM tumor cells. GF109203X is an inhibitor of both protein kinase C and of GRK6 that causes near total inhibition of these kinases in vitro at distinct concentrations of 0.1μM and 1-10μM respectively. Notably, GF109203X was substantially cytotoxic to 10/14 myeloma tumor lines at concentrations most consistent with GRK6 inhibition (5-20μM), and was selectively more cytotoxic to myeloma tumor cells than to non-myeloma cell lines (P=0.01), highlighting the potential of GRK6 as a pharmaceutical target for selective therapeutic intervention in myeloma. As mice that lack GRK6 are healthy, inhibition of GRK6 represents a uniquely targeted novel therapeutic strategy in human multiple myeloma. Perkins:MMRC: Employment. Reeder:Celgene: Research Funding; Millennium: Research Funding. Fonseca:Otsuka: Consultancy; BMS: Consultancy; Amgen: Consultancy; Medtronic: Consultancy; Genzyme: Consultancy.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood.V114.22.601.601