Nonlinear [Lagrangian (script capital L)] -Random Stability of an ACQ Functional Equation

We prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional equation: 11f(x+2y)+11f(x-2y)=44f(x+y)+44f(x-y)+12f(3y)-48f(2y)+60f(y)-66f(x) in complete latticetic random normed spaces.

Saved in:
Bibliographic Details
Published in:Journal of inequalities and applications Vol. 2011; no. 1; p. 194394
Main Authors: Saadati, Reza, Zohdi, M M, Vaezpour, S M
Format: Journal Article
Language:English
Published: Heidelberg Springer Nature B.V 06-03-2011
BioMed Central Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional equation: 11f(x+2y)+11f(x-2y)=44f(x+y)+44f(x-y)+12f(3y)-48f(2y)+60f(y)-66f(x) in complete latticetic random normed spaces.
ISSN:1025-5834
1029-242X
1029-242X
DOI:10.1186/1029-242X-2011-194394