Nonlinear [Lagrangian (script capital L)] -Random Stability of an ACQ Functional Equation
We prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional equation: 11f(x+2y)+11f(x-2y)=44f(x+y)+44f(x-y)+12f(3y)-48f(2y)+60f(y)-66f(x) in complete latticetic random normed spaces.
Saved in:
Published in: | Journal of inequalities and applications Vol. 2011; no. 1; p. 194394 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Heidelberg
Springer Nature B.V
06-03-2011
BioMed Central Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional equation: 11f(x+2y)+11f(x-2y)=44f(x+y)+44f(x-y)+12f(3y)-48f(2y)+60f(y)-66f(x) in complete latticetic random normed spaces. |
---|---|
ISSN: | 1025-5834 1029-242X 1029-242X |
DOI: | 10.1186/1029-242X-2011-194394 |