Interplay between the HTLV-2 Tax and APH-2 proteins in the regulation of the AP-1 pathway
In contrast with human T-cell leukemia virus type 1 (HTLV-1) that causes ATL (adult T-cell leukemia), HTLV-2 has not been causally linked to malignant disease. The minus strand of the HTLV genomes encode the regulatory proteins HTLV-1 bZIP factor (HBZ) for HTLV-1 and antisense protein of HTLV-2 (APH...
Saved in:
Published in: | Retrovirology Vol. 9; no. 1; p. 98 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
03-12-2012
BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast with human T-cell leukemia virus type 1 (HTLV-1) that causes ATL (adult T-cell leukemia), HTLV-2 has not been causally linked to malignant disease. The minus strand of the HTLV genomes encode the regulatory proteins HTLV-1 bZIP factor (HBZ) for HTLV-1 and antisense protein of HTLV-2 (APH-2) for HTLV-2. Unlike the viral proteins Tax1 and Tax2, both HBZ and APH-2 are constitutively expressed in infected cells suggesting that they may play important roles in the pathogenesis of these viruses. To date, very little is known about the function of APH-2 except that it inhibits Tax2-mediated transcription of HTLV-2 genes. In the present study, we investigated the role of APH-2 in basal and Tax2B-mediated activation of the AP-1 pathway.
We demonstrate that, unlike HBZ, APH-2 stimulates basal AP-1 transcription by interacting with c-Jun and JunB through its non-conventional bZIP domain. In addition, when Tax2 and APH-2 are co-expressed, they physically interact in vivo and in vitro and APH-2 acts as an inhibitor of Tax2-mediated activation of AP-1 transcription.
This report is the first to document that HTLV-2 can modulate the AP-1 pathway. Altogether our results reveal that, in contrast with HBZ, APH-2 regulates AP-1 activity in a Tax2-dependant manner. As the AP-1 pathway is involved in numerous cellular functions susceptible to affect the life cycle of the virus, these distinct biological properties between HBZ and APH-2 may contribute to the differential pathogenic potential of HTLV-1 and HTLV-2. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1742-4690 1742-4690 |
DOI: | 10.1186/1742-4690-9-98 |