Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes
In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH) 2 nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction t...
Saved in:
Published in: | Nanoscale research letters Vol. 6; no. 1; p. 397 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer New York
26-05-2011
Springer Nature B.V BioMed Central Ltd Springer SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO) nanodiscs through dehydrogenation of 1-dimensional Cu(OH)
2
nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO nanostructures were characterized using X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The possible growth mechanism of the interlaced disc CuO nanostructures is systematically discussed. The electrochemical performances of the CuO nanodisc electrodes were evaluated in detail using cyclic voltammetry and galvanostatic cycling. Furthermore, we demonstrate that the incorporation of multiwalled carbon nanotubes enables the enhanced reversible capacities and capacity retention of CuO nanodisc electrodes on cycling by offering more efficient electron transport paths. |
---|---|
ISSN: | 1556-276X 1931-7573 1556-276X |
DOI: | 10.1186/1556-276X-6-397 |