Deep sequencing of chicken microRNAs

The use of new, deep sequencing technologies has greatly accelerated microRNA discovery. We have applied this approach to the identification of chicken microRNAs and to the comparison of microRNAs in chicken embryo fibroblasts (CEF) infected with Marek's disease virus (MDV) to those present in...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics Vol. 9; no. 1; p. 185
Main Authors: Burnside, Joan, Ouyang, Ming, Anderson, Amy, Bernberg, Erin, Lu, Cheng, Meyers, Blake C, Green, Pamela J, Markis, Milos, Isaacs, Grace, Huang, Emily, Morgan, Robin W
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 22-04-2008
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of new, deep sequencing technologies has greatly accelerated microRNA discovery. We have applied this approach to the identification of chicken microRNAs and to the comparison of microRNAs in chicken embryo fibroblasts (CEF) infected with Marek's disease virus (MDV) to those present in uninfected CEF. We obtained 125,463 high quality reads that showed an exact match to the chicken genome. The majority of the reads corresponded to previously annotated chicken microRNAs; however, the sequences of many potential novel microsRNAs were obtained. A comparison of the reads obtained in MDV-infected and uninfected CEF indicates that infection does not significantly perturb the expression profile of microRNAs. Frequently sequenced microRNAs include miR-221/222, which are thought to play a role in growth and proliferation. A number of microRNAs (e.g., let-7, miR-199a-1, 26a) are expressed at lower levels in MDV-induced tumors, highlighting the potential importance of this class of molecules in tumorigenesis. Deep sequencing technology is highly suited for small RNA discovery. This approach is independent of comparative sequence analysis, which has been the primary method used to identify chicken microRNAs. Our results have confirmed the expression of many microRNAs identified by sequence similarity and identified a pool of candidate novel microRNAs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2164
1471-2164
DOI:10.1186/1471-2164-9-185