Numerical simulations of shock and rarefaction waves interacting with interfaces in compressible multiphase flows

Developing a highly accurate numerical framework to study multiphase mixing in high speed flows containing shear layers, shocks, and strong accelerations is critical to many scientific and engineering endeavors. These flows occur across a wide range of scales: from tiny bubbles in human tissue to ma...

Full description

Saved in:
Bibliographic Details
Main Author: Henry de Frahan, Marc T
Format: Dissertation
Language:English
Published: Ann Arbor ProQuest Dissertations & Theses 2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Developing a highly accurate numerical framework to study multiphase mixing in high speed flows containing shear layers, shocks, and strong accelerations is critical to many scientific and engineering endeavors. These flows occur across a wide range of scales: from tiny bubbles in human tissue to massive stars collapsing. The lack of understanding of these flows has impeded the success of many engineering applications, our comprehension of astrophysical and planetary formation processes, and the development of biomedical technologies. Controlling mixing between different fluids is central to achieving fusion energy, where mixing is undesirable, and supersonic combustion, where enhanced mixing is important. Iron, found throughout the universe and a necessary component for life, is dispersed through the mixing processes of a dying star. Non-invasive treatments using ultrasound to induce bubble collapse in tissue are being developed to destroy tumors or deliver genes to specific cells. Laboratory experiments of these flows are challenging because the initial conditions and material properties are difficult to control, modern diagnostics are unable to resolve the flow dynamics and conditions, and experiments of these flows are expensive. Numerical simulations can circumvent these difficulties and, therefore, have become a necessary component of any scientific challenge. Advances in the three fields of numerical methods, high performance computing, and multiphase flow modeling are presented: (i) novel numerical methods to capture accurately the multiphase nature of the problem; (ii) modern high performance computing paradigms to resolve the disparate time and length scales of the physical processes; (iii) new insights and models of the dynamics of multiphase flows, including mixing through hydrodynamic instabilities. These studies have direct applications to engineering and biomedical fields such as fuel injection problems, plasma deposition, cancer treatments, and turbomachinery.
Bibliography:Mechanical Engineering.
Source: Dissertation Abstracts International, Volume: 78-07(E), Section: B.
Adviser: Eric Johnsen.
ISBN:9781369588248
1369588240