Tissue MicroArray (TMA) analysis of normal and persistent Chlamydophila pneumoniae infection
Chlamydophila pneumoniae infection has been implicated as a potential risk factor for atherosclerosis, however the mechanism leading to persistent infection and its role in the disease process remains to be elucidated. We validated the use of tissue microarray (TMA) technology, in combination with i...
Saved in:
Published in: | BMC infectious diseases Vol. 6; no. 1; p. 152 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central Ltd
19-10-2006
BioMed Central BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chlamydophila pneumoniae infection has been implicated as a potential risk factor for atherosclerosis, however the mechanism leading to persistent infection and its role in the disease process remains to be elucidated.
We validated the use of tissue microarray (TMA) technology, in combination with immunohistochemistry (IHC), to test antibodies (GroEL, GroES, GspD, Ndk and Pyk) raised against differentially expressed proteins under an interferon-gamma (IFN-gamma) induced model of chlamydial persistence.
In the cell pellet array, we were able to identify differences in protein expression patterns between untreated and IFN-gamma treated samples. Typical, large chlamydial inclusions could be observed in the untreated samples with all antibodies, whereas the number of inclusions were decreased and were smaller and atypical in shape in the IFN-gamma treated samples. The staining results obtained with the TMA method were generally similar to the changes observed between normal and IFN-gamma persistence using proteomic analysis. Subsequently, it was shown in a second TMA including archival atheromatous heart tissues from 12 patients undergoing heart transplantation, that GroEL, GroES, GspD and Pyk were expressed in atheromatous heart tissue specimens as well, and were detectable morphologically within lesions by IHC.
TMA technology proved useful in documenting functional proteomics data with the morphologic distribution of GroEL, GroES, GspD, Ndk and Pyk within formalin-fixed, paraffin-embedded cell pellets and tissues from patients with severe coronary atherosclerosis. The antibodies GroEL and GroES, which were upregulated under persistence in proteomic analysis, displayed positive reaction in atheromatous heart tissue from 10 out of 12 patients. These may be useful markers for the detection of persistent infection in vitro and in vivo. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2334 1471-2334 |
DOI: | 10.1186/1471-2334-6-152 |