Dehydroepiandrosterone protects bovine retinal capillary pericytes against glucose toxicity

Pericyte loss is an early feature of diabetic retinopathy and represents a key step in the progression of this disease. This study aimed to evaluate the effect of dehydroepiandro-sterone (DHEA) on glucose toxicity in retinal capillary pericytes. Bovine retinal pericytes (BRP) were cultured in a high...

Full description

Saved in:
Bibliographic Details
Published in:Journal of endocrinology Vol. 158; no. 1; pp. 21 - 26
Main Authors: Brignardello, E, Beltramo, E, Molinatti, PA, Aragno, M, Gatto, V, Tamagno, E, Danni, O, Porta, M, Boccuzzi, G
Format: Journal Article
Language:English
Published: Colchester BioScientifica 01-07-1998
Portland Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pericyte loss is an early feature of diabetic retinopathy and represents a key step in the progression of this disease. This study aimed to evaluate the effect of dehydroepiandro-sterone (DHEA) on glucose toxicity in retinal capillary pericytes. Bovine retinal pericytes (BRP) were cultured in a high glucose concentration, with or without DHEA. After 4 days of incubation the number of BRP was significantly reduced by the high glucose concentration. The addition of DHEA to the medium reversed the adverse effect of high glucose: BRP proliferation partially recovered in the presence of 10 nmol/l DHEA, and completely recovered in the presence of DHEA at concentrations equal to or greater than 100 nmol/l. At physiological glucose concentrations, DHEA had no effect on BRP growth. Data show that DHEA, at concentrations similar to those found in human plasma, protects BRP against glucose toxicity. This effect seems specific for DHEA, since its metabolites, 5-en-androstene-3 beta, 17 beta-diol, dihydrotestosterone and estradiol did not alter BRP growth in normal or high glucose media. Various pieces of evidence link the antioxidant properties of DHEA to its protective effect on glucose-induced toxicity in BRP.
ISSN:0022-0795
1479-6805
DOI:10.1677/joe.0.1580021