Application of artificial neural networks for the prediction of antitumor activity of a series of acridinone derivatives

Artificial neural networks (ANNs) have been applied for the quantitative structure-activity relationships (QSAR) studies of antitumor activity of acridinone derivatives. Molecular modeling studies were performed with the use of HyperChem and Dragon computer programs and molecular geometry optimizati...

Full description

Saved in:
Bibliographic Details
Published in:Medicinal chemistry (Shp-sariqah, United Arab Emirates) Vol. 8; no. 3; p. 309
Main Author: Koba, Marcin
Format: Journal Article
Language:English
Published: Netherlands 01-05-2012
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial neural networks (ANNs) have been applied for the quantitative structure-activity relationships (QSAR) studies of antitumor activity of acridinone derivatives. Molecular modeling studies were performed with the use of HyperChem and Dragon computer programs and molecular geometry optimization using MM+ molecular mechanics and semi-empirical AM1 method, and several molecular descriptors of agents were obtained. A high correlation resulted between the ANN predicted antitumor activity and that one from biological experiments for the data used in the testing set of acridinones was obtained with correlation coefficient on the level of 0.9484. Moreover, the sensitivity analysis indicated that molecular parameters describing geometrical properties as well as lipophilicity of acridinone derivative molecule are important for acridinones antitumor activity.
ISSN:1875-6638
DOI:10.2174/157340612800786651