The cell-to-cell coordination between activated T cells and CpG-stimulated macrophages synergistically induce elevated levels of IL-10 via NF-κB1, STAT3, and CD40/CD154

Studies into the regulation of interleukin-10 (IL-10), have focused only on the molecular or single-cell level. The cues that induce IL-10 in the context of cell-to-cell communication are scarce. To fill this gap, this study elucidates the cell-to-cell interaction dependent regulation of IL-10. The...

Full description

Saved in:
Bibliographic Details
Published in:Cell communication and signaling Vol. 11; no. 1; p. 95
Main Authors: Dibra, Denada, Li, Shulin
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 13-12-2013
BioMed Central
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Studies into the regulation of interleukin-10 (IL-10), have focused only on the molecular or single-cell level. The cues that induce IL-10 in the context of cell-to-cell communication are scarce. To fill this gap, this study elucidates the cell-to-cell interaction dependent regulation of IL-10. The simultaneous activation of CD4+ T cells via CD3/CD28 and stimulation of macrophages via CpG and their intercellular communication with each other in the same microenvironment is necessary to induce a synergistic expression of IL-10. NF-κB1, ERK, and STAT3 are positive regulators of this cell-to-cell communication mediated molecular change of IL-10 induction. Strikingly, the activation of CD40/CD154 signaling is a negative regulator of IL-10 levels by CD3/CD28/CpG. These findings are of prominence as CD3/CD28/CpG treatment can induce the anti-inflammatory cytokines IL-10 and IL-30, and the activation or inhibition of the CD40/CD154 acts as molecular rheostat of the expression of IL-10 or IL-30. More importantly, this not only serves as an example of IL-10 regulation at the cellular via coordination of two signals from two cell types, but these findings also lay the molecular and cellular groundwork for future studies to investigate how to manipulate IL-10 or IL-30 production during inflammation, cancer, or autoimmune diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1478-811X
1478-811X
DOI:10.1186/1478-811X-11-95