Gnowee: A Hybrid Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer Design

This paper introduces Gnowee, a modular, Python-based, open-source hybrid metaheuristic optimization algorithm (Available from https://github.com/SlaybaughLab/Gnowee). Gnowee is designed for rapid convergence to nearly globally optimum solutions for complex, constrained nuclear engineering problems...

Full description

Saved in:
Bibliographic Details
Main Authors: Bevins, James, Slaybaugh, Rachel
Format: Journal Article
Language:English
Published: 15-04-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces Gnowee, a modular, Python-based, open-source hybrid metaheuristic optimization algorithm (Available from https://github.com/SlaybaughLab/Gnowee). Gnowee is designed for rapid convergence to nearly globally optimum solutions for complex, constrained nuclear engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Gnowee's hybrid metaheuristic framework is a new combination of a set of diverse, robust heuristics that appropriately balance diversification and intensification strategies across a wide range of optimization problems. This novel algorithm was specifically developed to optimize complex nuclear design problems; the motivating research problem was the design of material stack-ups to modify neutron energy spectra to specific targeted spectra for applications in nuclear medicine, technical nuclear forensics, nuclear physics, etc. However, there are a wider range of potential applications for this algorithm both within the nuclear community and beyond. To demonstrate Gnowee's behavior for a variety of problem types, comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of eighteen continuous, mixed-integer, and combinatorial benchmarks. These results demonstrate Gnoweee to have superior flexibility and convergence characteristics over a wide range of design spaces. We anticipate this wide range of applicability will make this algorithm desirable for many complex engineering applications.
DOI:10.48550/arxiv.1804.05429