Explicit Quillen models for Cartesian products of $2$-cones

We give an explicit minimal Quillen model for the Cartesian product $X\times Y$ of rational $2$-cones in terms of derivations and a binary operation $\star \colon \mathbb{M}(V)\otimes \mathbb{L}(W)\to \mathbb{L}(V\oplus W\oplus s(V\otimes W))$, where $(\mathbb{L}(V), \partial)$ and $(\mathbb{L}(W),...

Full description

Saved in:
Bibliographic Details
Main Authors: Buijs, Urtzi, Carrasquel, José, Vandembroucq, Lucile
Format: Journal Article
Language:English
Published: 28-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We give an explicit minimal Quillen model for the Cartesian product $X\times Y$ of rational $2$-cones in terms of derivations and a binary operation $\star \colon \mathbb{M}(V)\otimes \mathbb{L}(W)\to \mathbb{L}(V\oplus W\oplus s(V\otimes W))$, where $(\mathbb{L}(V), \partial)$ and $(\mathbb{L}(W), \partial)$ are Quillen minimal models for $X$ and $Y$ respectively and $\mathbb{M}$ denotes the free magma on $W$. The model presented also allows us to explicitly describe a model for the diagonal map $\Delta \colon X\to X\times X$.
DOI:10.48550/arxiv.2402.18168