Explicit Quillen models for Cartesian products of $2$-cones
We give an explicit minimal Quillen model for the Cartesian product $X\times Y$ of rational $2$-cones in terms of derivations and a binary operation $\star \colon \mathbb{M}(V)\otimes \mathbb{L}(W)\to \mathbb{L}(V\oplus W\oplus s(V\otimes W))$, where $(\mathbb{L}(V), \partial)$ and $(\mathbb{L}(W),...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
28-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give an explicit minimal Quillen model for the Cartesian product $X\times
Y$ of rational $2$-cones in terms of derivations and a binary operation $\star
\colon \mathbb{M}(V)\otimes \mathbb{L}(W)\to \mathbb{L}(V\oplus W\oplus
s(V\otimes W))$, where $(\mathbb{L}(V), \partial)$ and $(\mathbb{L}(W),
\partial)$ are Quillen minimal models for $X$ and $Y$ respectively and
$\mathbb{M}$ denotes the free magma on $W$. The model presented also allows us
to explicitly describe a model for the diagonal map $\Delta \colon X\to X\times
X$. |
---|---|
DOI: | 10.48550/arxiv.2402.18168 |