INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of Language Models

A salient characteristic of pre-trained language models (PTLMs) is a remarkable improvement in their generalization capability and emergence of new capabilities with increasing model capacity and pre-training dataset size. Consequently, we are witnessing the development of enormous models pushing th...

Full description

Saved in:
Bibliographic Details
Main Authors: Renduchintala, H S V N S Kowndinya, Killamsetty, Krishnateja, Bhatia, Sumit, Aggarwal, Milan, Ramakrishnan, Ganesh, Iyer, Rishabh, Krishnamurthy, Balaji
Format: Journal Article
Language:English
Published: 11-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A salient characteristic of pre-trained language models (PTLMs) is a remarkable improvement in their generalization capability and emergence of new capabilities with increasing model capacity and pre-training dataset size. Consequently, we are witnessing the development of enormous models pushing the state-of-the-art. It is, however, imperative to realize that this inevitably leads to prohibitively long training times, extortionate computing costs, and a detrimental environmental impact. Significant efforts are underway to make PTLM training more efficient through innovations in model architectures, training pipelines, and loss function design, with scant attention being paid to optimizing the utility of training data. The key question that we ask is whether it is possible to train PTLMs by employing only highly informative subsets of the training data while maintaining downstream performance? Building upon the recent progress in informative data subset selection, we show how we can employ submodular optimization to select highly representative subsets of the training corpora and demonstrate that the proposed framework can be applied to efficiently train multiple PTLMs (BERT, BioBERT, GPT-2) using only a fraction of data. Further, we perform a rigorous empirical evaluation to show that the resulting models achieve up to $\sim99\%$ of the performance of the fully-trained models. We made our framework publicly available at https://github.com/Efficient-AI/ingenious.
DOI:10.48550/arxiv.2305.06677