A Marstrand projection theorem for lines
Fix integers $1<k<n$. For $V\in G(k,n)$, let $P_V: \mathbb{R}^n\rightarrow V$ be the orthogonal projection. For $V\in G(k,n)$, define the map \[ \pi_V: A(1,n)\rightarrow A(1,V)\bigsqcup V. \] \[ \ell\mapsto P_V(\ell). \] For any $0<a<\text{dim}(A(1,n))$, we find the optimal number $s(a)$...
Saved in:
Main Author: | |
---|---|
Format: | Journal Article |
Language: | English |
Published: |
26-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fix integers $1<k<n$. For $V\in G(k,n)$, let $P_V: \mathbb{R}^n\rightarrow V$
be the orthogonal projection. For $V\in G(k,n)$, define the map \[ \pi_V:
A(1,n)\rightarrow A(1,V)\bigsqcup V. \] \[ \ell\mapsto P_V(\ell). \]
For any $0<a<\text{dim}(A(1,n))$, we find the optimal number $s(a)$ such that
the following is true. For any Borel set $\boldsymbol{A} \subset A(1,n)$ with
$\text{dim}(\boldsymbol{A})=a$, we have \[
\text{dim}(\pi_V(\boldsymbol{A}))=s(a), \text{for a.e. } V\in G(k,n). \] When
$A(1,n)$ is replaced by $A(0,n)=\mathbb{R}^n$, it is the classical Marstrand
projection theorem, for which $s(a)=\min\{k,a\}$. A new ingredient of the paper
is the Fourier transform on affine Grassmannian. |
---|---|
DOI: | 10.48550/arxiv.2310.17454 |