LVIS: Learning from Value Function Intervals for Contact-Aware Robot Controllers

Guided policy search is a popular approach for training controllers for high-dimensional systems, but it has a number of pitfalls. Non-convex trajectory optimization has local minima, and non-uniqueness in the optimal policy itself can mean that independently-optimized samples do not describe a cohe...

Full description

Saved in:
Bibliographic Details
Main Authors: Deits, Robin, Koolen, Twan, Tedrake, Russ
Format: Journal Article
Language:English
Published: 15-09-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Guided policy search is a popular approach for training controllers for high-dimensional systems, but it has a number of pitfalls. Non-convex trajectory optimization has local minima, and non-uniqueness in the optimal policy itself can mean that independently-optimized samples do not describe a coherent policy from which to train. We introduce LVIS, which circumvents the issue of local minima through global mixed-integer optimization and the issue of non-uniqueness through learning the optimal value function (or cost-to-go) rather than the optimal policy. To avoid the expense of solving the mixed-integer programs to full global optimality, we instead solve them only partially, extracting intervals containing the true cost-to-go from early termination of the branch-and-bound algorithm. These interval samples are used to weakly supervise the training of a neural net which approximates the true cost-to-go. Online, we use that learned cost-to-go as the terminal cost of a one-step model-predictive controller, which we solve via a small mixed-integer optimization. We demonstrate the LVIS approach on a cart-pole system with walls and a planar humanoid robot model and show that it can be applied to a fundamentally hard problem in feedback control--control through contact.
DOI:10.48550/arxiv.1809.05802