Spectral Smoothing via Random Matrix Perturbations

We consider stochastic smoothing of spectral functions of matrices using perturbations commonly studied in random matrix theory. We show that a spectral function remains spectral when smoothed using a unitarily invariant perturbation distribution. We then derive state-of-the-art smoothing bounds for...

Full description

Saved in:
Bibliographic Details
Main Authors: Abernethy, Jacob, Lee, Chansoo, Tewari, Ambuj
Format: Journal Article
Language:English
Published: 10-07-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider stochastic smoothing of spectral functions of matrices using perturbations commonly studied in random matrix theory. We show that a spectral function remains spectral when smoothed using a unitarily invariant perturbation distribution. We then derive state-of-the-art smoothing bounds for the maximum eigenvalue function using the Gaussian Orthogonal Ensemble (GOE). Smoothing the maximum eigenvalue function is important for applications in semidefinite optimization and online learning. As a direct consequence of our GOE smoothing results, we obtain an $O((N \log N)^{1/4} \sqrt{T})$ expected regret bound for the online variance minimization problem using an algorithm that performs only a single maximum eigenvector computation per time step. Here $T$ is the number of rounds and $N$ is the matrix dimension. Our algorithm and its analysis also extend to the more general online PCA problem where the learner has to output a rank $k$ subspace. The algorithm just requires computing $k$ maximum eigenvectors per step and enjoys an $O(k (N \log N)^{1/4} \sqrt{T})$ expected regret bound.
DOI:10.48550/arxiv.1507.03032