The performance of the quantum adiabatic algorithm on spike Hamiltonians

Perturbed Hamming weight problems serve as examples of optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work we study the efficiency of the adiabatic algorithm for solving the "the Hamming weight with a spike" problem by...

Full description

Saved in:
Bibliographic Details
Main Authors: Kong, Linghang, Crosson, Elizabeth
Format: Journal Article
Language:English
Published: 22-11-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Perturbed Hamming weight problems serve as examples of optimization instances for which the adiabatic algorithm provably out performs classical simulated annealing. In this work we study the efficiency of the adiabatic algorithm for solving the "the Hamming weight with a spike" problem by using several methods to compute the scaling of the spectral gap at the critical point, which apply for various ranges of the height and width of the barrier. Our main result is a rigorous polynomial lower bound on the minimum spectral gap for the adiabatic evolution when the bit-symmetric cost function has a thin but polynomially high barrier. This is accomplished by the use of a variational argument with an improved ansatz for the ground state, along with a comparison to the spectrum of the system when no spike term is present. We also give a more detailed treatment of the spin coherent path-integral instanton method which was used by Farhi, Goldstone, and Gutmann in arXiv:quant-ph/0201031, and consider its applicability for estimating the gap for different scalings of barrier height and width. We adapt the discrete WKB method for an abruptly changing potential, and apply it to the construction of approximate wave functions which can be used to estimate the gap. Finally, the improved ansatz for the ground state leads to a method for predicting the location of avoided crossings in the excited states of the energy spectrum of the thin spike Hamiltonian, and we use a recursion relation to determine the ordering of some of these avoided crossings, which may be a useful step towards understanding the diabatic cascade phenomenon which occurs in spike Hamiltonians.
DOI:10.48550/arxiv.1511.06991