New Coresets for Projective Clustering and Applications

$(j,k)$-projective clustering is the natural generalization of the family of $k$-clustering and $j$-subspace clustering problems. Given a set of points $P$ in $\mathbb{R}^d$, the goal is to find $k$ flats of dimension $j$, i.e., affine subspaces, that best fit $P$ under a given distance measure. In...

Full description

Saved in:
Bibliographic Details
Main Authors: Tukan, Murad, Wu, Xuan, Zhou, Samson, Braverman, Vladimir, Feldman, Dan
Format: Journal Article
Language:English
Published: 08-03-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:$(j,k)$-projective clustering is the natural generalization of the family of $k$-clustering and $j$-subspace clustering problems. Given a set of points $P$ in $\mathbb{R}^d$, the goal is to find $k$ flats of dimension $j$, i.e., affine subspaces, that best fit $P$ under a given distance measure. In this paper, we propose the first algorithm that returns an $L_\infty$ coreset of size polynomial in $d$. Moreover, we give the first strong coreset construction for general $M$-estimator regression. Specifically, we show that our construction provides efficient coreset constructions for Cauchy, Welsch, Huber, Geman-McClure, Tukey, $L_1-L_2$, and Fair regression, as well as general concave and power-bounded loss functions. Finally, we provide experimental results based on real-world datasets, showing the efficacy of our approach.
DOI:10.48550/arxiv.2203.04370