Morita equivalence of formal Poisson structures

We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields $\pi=\pi_0 + \lambda\pi_1 +\cdots$ satisfying the Poisson integrability condition $[\pi,\pi]=0$. Our main result gives a complete descriptio...

Full description

Saved in:
Bibliographic Details
Main Authors: Bursztyn, Henrique, Ortiz, Inocencio, Waldmann, Stefan
Format: Journal Article
Language:English
Published: 17-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields $\pi=\pi_0 + \lambda\pi_1 +\cdots$ satisfying the Poisson integrability condition $[\pi,\pi]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi_0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products, our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.
AbstractList We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields $\pi=\pi_0 + \lambda\pi_1 +\cdots$ satisfying the Poisson integrability condition $[\pi,\pi]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi_0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products, our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.
Author Bursztyn, Henrique
Ortiz, Inocencio
Waldmann, Stefan
Author_xml – sequence: 1
  givenname: Henrique
  surname: Bursztyn
  fullname: Bursztyn, Henrique
– sequence: 2
  givenname: Inocencio
  surname: Ortiz
  fullname: Ortiz, Inocencio
– sequence: 3
  givenname: Stefan
  surname: Waldmann
  fullname: Waldmann, Stefan
BackLink https://doi.org/10.48550/arXiv.2006.10240$$DView paper in arXiv
BookMark eNotzr1uwjAUQGEP7dBSHoCpfoGE69jGzlih0lYKgoE9uvGPZCmJwU5Q-_aotNPZjr5n8jDG0RGyYlAKLSWsMX2Ha1kBbEoGlYAnst7HFCak7jKHK_ZuNI5GT31MA_b0GEPOcaR5SrOZ5uTyC3n02Ge3_O-CnHbvp-1n0Rw-vrZvTYEbBUWnDGpnFLNSKi28Ytqh0FzU3Bhe-4oBaMW4tcYKKzorre4UIID1YDjyBXn9297F7TmFAdNP-ytv73J-A6_4P-s
ContentType Journal Article
Copyright http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID AKZ
GOX
DOI 10.48550/arxiv.2006.10240
DatabaseName arXiv Mathematics
arXiv.org
DatabaseTitleList
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 2006_10240
GroupedDBID AKZ
GOX
ID FETCH-LOGICAL-a670-b7ca8ec71d55784f718ea483493cc39f21008713ddcd4d4bd5d8b70a00df0c3a3
IEDL.DBID GOX
IngestDate Mon Jan 08 05:43:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a670-b7ca8ec71d55784f718ea483493cc39f21008713ddcd4d4bd5d8b70a00df0c3a3
OpenAccessLink https://arxiv.org/abs/2006.10240
ParticipantIDs arxiv_primary_2006_10240
PublicationCentury 2000
PublicationDate 2020-06-17
PublicationDateYYYYMMDD 2020-06-17
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-17
  day: 17
PublicationDecade 2020
PublicationYear 2020
Score 1.7736785
SecondaryResourceType preprint
Snippet We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields...
SourceID arxiv
SourceType Open Access Repository
SubjectTerms Mathematics - Symplectic Geometry
Title Morita equivalence of formal Poisson structures
URI https://arxiv.org/abs/2006.10240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED6RTiwIBKg85YHVauI4cTIiaOnCQ6JDt8qxz1Il1ABVED-_d04QLKy2l7Pv9fns7wBuLDpsKqektUZJjU7LilRHeo7u5BwzDPzfef5qnpbV_ZRpcsTPXxj7-b3-6vmBm-0k1goypuFKIFGKn2w9PC_74mSk4hrW_66jHDMO_QkSs0M4GLI7cdsfxxHs4eYYJo8tI3CBH92azpVNSbRBxGzxTby0JHq7ET2Ra0fo9wQWs-nibi6HPgXSliaVjXG2QmcyX5D660DeHi3f0dW5c3kdFPPnEBb03nntdeMLXzUmtWnqQ-pym5_CiKA-jkEwvV1ZYyjKkGss0CoyH9ovwglZQYnaGYyjdKv3noqCm0iWqyj4-f9TF7CvGCVyxx1zCSOSB68g2fruOu7nDs0McwQ
link.rule.ids 228,230,782,887
linkProvider Cornell University
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morita+equivalence+of+formal+Poisson+structures&rft.au=Bursztyn%2C+Henrique&rft.au=Ortiz%2C+Inocencio&rft.au=Waldmann%2C+Stefan&rft.date=2020-06-17&rft_id=info:doi/10.48550%2Farxiv.2006.10240&rft.externalDocID=2006_10240