Morita equivalence of formal Poisson structures

We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields $\pi=\pi_0 + \lambda\pi_1 +\cdots$ satisfying the Poisson integrability condition $[\pi,\pi]=0$. Our main result gives a complete descriptio...

Full description

Saved in:
Bibliographic Details
Main Authors: Bursztyn, Henrique, Ortiz, Inocencio, Waldmann, Stefan
Format: Journal Article
Language:English
Published: 17-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields $\pi=\pi_0 + \lambda\pi_1 +\cdots$ satisfying the Poisson integrability condition $[\pi,\pi]=0$. Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure ($\pi_0=0$) in terms of $B$-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products, our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.
DOI:10.48550/arxiv.2006.10240