Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data
A number of reconstructions of millennial-scale climate variability have been carried out in order to understand patterns of natural climate variability, on decade to century timescales, and the role of anthropogenic forcing. These reconstructions have mainly used tree-ring data and other data sets...
Saved in:
Published in: | Nature Vol. 433; no. 7026; pp. 613 - 617 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Nature Publishing Group
10-02-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A number of reconstructions of millennial-scale climate variability have been carried out in order to understand patterns of natural climate variability, on decade to century timescales, and the role of anthropogenic forcing. These reconstructions have mainly used tree-ring data and other data sets of annual to decadal resolution. Lake and ocean sediments have a lower time resolution, but provide climate information at multicentennial timescales that may not be captured by tree-ring data. Here we reconstruct Northern Hemisphere temperatures for the past 2,000 years by combining low-resolution proxies with tree-ring data, using a wavelet transform technique to achieve timescale-dependent processing of the data. Our reconstruction shows larger multicentennial variability than most previous multi-proxy reconstructions, but agrees well with temperatures reconstructed from borehole measurements and with temperatures obtained with a general circulation model. According to our reconstruction, high temperatures-similar to those observed in the twentieth century before 1990-occurred around ad 1000 to 1100, and minimum temperatures that are about 0.7 K below the average of 1961-90 occurred around ad 1600. This large natural variability in the past suggests an important role of natural multicentennial variability that is likely to continue. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature03265 |