Use of Preclinical Data for Selection of a Phase II/III Dose for Evernimicin and Identification of a Preclinical MIC Breakpoint
Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commerc...
Saved in:
Published in: | Antimicrobial Agents and Chemotherapy Vol. 45; no. 1; pp. 13 - 22 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Society for Microbiology
01-01-2001
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Classifications
Services
AAC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
AAC
About
AAC
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AAC
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0066-4804
Online ISSN:
1098-6596
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AAC
.asm.org, visit:
AAC
|
---|---|
AbstractList | One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis (n = 2), and S. aureus (n = 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10(7) CFU), log killing (pathogen dependent, ranging from 1 to 3 log(10)), or 90% maximal killing effect (90% E(max)). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90% E(max) AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints. One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis (n = 2), and S. aureus (n = 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10 super(7) CFU), log killing (pathogen dependent, ranging from 1 to 3 log sub(10)), or 90% maximal killing effect (90% E sub(max)). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90% E sub(max) AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints. One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number ( n = 4,543) of recent clinical isolates of gram-positive pathogens ( Streptococcus pneumoniae , Enterococcus faecalis and Enterococcus faecium , and Staphylococcus aureus ) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers ( n = 40) and patients with hypoalbuminemia ( n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae ( n = 5), E. faecalis ( n = 2), and S. aureus ( n = 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10 7 CFU), log killing (pathogen dependent, ranging from 1 to 3 log 10 ), or 90% maximal killing effect (90% E max ). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae , the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing ( S. aureus ), 1 log killing (enterococci), or 90% E max AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints. One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae,Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis(n = 2), and S. aureus (n= 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (107 CFU), log killing (pathogen dependent, ranging from 1 to 3 log10), or 90% maximal killing effect (90%Emax). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90%Emax AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints. Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology. For an alternate route to AAC .asm.org, visit: AAC |
Author | C. Hardalo W. A. Craig R. Hare S. L. Preston C. Banfield D. Andes G. L. Drusano O. Vesga |
AuthorAffiliation | Division of Clinical Pharmacology, Albany Medical College, Albany, New York 1 ; Schering Plough Research Institute, Kenilworth, New Jersey 2 ; and Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin 3 |
AuthorAffiliation_xml | – name: Division of Clinical Pharmacology, Albany Medical College, Albany, New York 1 ; Schering Plough Research Institute, Kenilworth, New Jersey 2 ; and Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin 3 |
Author_xml | – sequence: 1 givenname: G. L surname: DRUSANO fullname: DRUSANO, G. L organization: Division of Clinical Pharmacology, Albany Medical College, Albany, New York, United States – sequence: 2 givenname: S. L surname: PRESTON fullname: PRESTON, S. L organization: Division of Clinical Pharmacology, Albany Medical College, Albany, New York, United States – sequence: 3 givenname: C surname: HARDALO fullname: HARDALO, C organization: Schering Plough Research Institute, Kenilworth, New Jersey, United Kingdom – sequence: 4 givenname: R surname: HARE fullname: HARE, R organization: Schering Plough Research Institute, Kenilworth, New Jersey, United Kingdom – sequence: 5 givenname: C surname: BANFIELD fullname: BANFIELD, C organization: Schering Plough Research Institute, Kenilworth, New Jersey, United Kingdom – sequence: 6 givenname: D surname: ANDES fullname: ANDES, D organization: Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin, United States – sequence: 7 givenname: O surname: VESGA fullname: VESGA, O organization: Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin, United States – sequence: 8 givenname: W. A surname: CRAIG fullname: CRAIG, W. A organization: Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=915423$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11120938$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLeFX4AEkZC4JfVH7CQSl2VbIFIRlShna-pMui6JvdjZIk78dRztUpZTT_bIzzvzemZOyJHzDgl5yWjBGK_PAExRyoIVTOScF5xS9oQsGG3qXMlGHZEFpUrlZU3LY3IS4x1NsWzoM3LMUgLaiHpBfn-LmPk-uwpoBuusgSE7hwmy3ofsKw5oJuvdTEB2tYYEt-1Z27bZuU_3Gbq4x-DsaI11Gbguazt0k-1TpgPlQfbP7Sp7HxC-b7x103PytIch4ov9eUquP1xcrz7ll18-tqvlZQ5KNFPOu4YBR-x5XdWdAACBN7RC2bOqqjpgVYlGlEqC4imgpq4bFEYpSiVHLk7Ju13azfZmxM4kiwEGvQl2hPBLe7D6_xdn1_rW3-uGciGS_O1eHvyPLcZJjzYaHAZw6LdRV1RKIevqUTC5VZyqMoFiB5rgYwzYP3hhVM_j1cvlSpdSM82E5lzP400qulNBHLm-89vgUtMekbw6_Pm_MvsVSMCbPQAxzacP4IyND1zDZMnnDrzeUWt7u_5pA-pkQacV_FtQ_AHkIciJ |
CODEN | AACHAX |
CitedBy_id | crossref_primary_10_1097_00013542_200207000_00002 crossref_primary_10_1345_aph_1A419 crossref_primary_10_1016_j_diagmicrobio_2010_06_012 crossref_primary_10_1016_S0149_2918_04_80001_8 crossref_primary_10_1016_j_aquaculture_2008_07_029 crossref_primary_10_1016_j_aquaculture_2021_737119 crossref_primary_10_1097_01_inf_0000094940_81959_14 crossref_primary_10_1002_jcph_1074 crossref_primary_10_1128_AAC_01410_06 crossref_primary_10_1016_j_ijantimicag_2020_106113 crossref_primary_10_1038_nrmicro862 crossref_primary_10_1128_aac_01401_22 crossref_primary_10_1586_ecp_13_6 crossref_primary_10_1016_S0891_5520_03_00061_8 crossref_primary_10_1016_j_ijid_2016_06_017 crossref_primary_10_1128_aac_00898_22 crossref_primary_10_1186_s12917_015_0343_7 crossref_primary_10_1186_1742_4682_6_10 crossref_primary_10_1097_00001432_200412000_00005 crossref_primary_10_1007_s15010_009_7108_9 crossref_primary_10_3390_antibiotics10121485 crossref_primary_10_1007_s40262_016_0418_z crossref_primary_10_1124_pr_111_005769 crossref_primary_10_1128_JCM_00837_11 crossref_primary_10_1089_sur_2006_025 crossref_primary_10_1128_AAC_45_12_3468_3473_2001 crossref_primary_10_1016_j_clinthera_2005_06_013 crossref_primary_10_1016_j_diagmicrobio_2004_08_019 crossref_primary_10_1128_AAC_01474_09 crossref_primary_10_1016_j_diagmicrobio_2020_115039 crossref_primary_10_1592_phco_27_3_333 crossref_primary_10_2147_IDR_S284754 crossref_primary_10_2146_ajhp050210 crossref_primary_10_1093_jac_dkw057 crossref_primary_10_1016_j_eimc_2010_05_008 crossref_primary_10_1128_AAC_49_10_4009_4014_2005 crossref_primary_10_1128_AAC_00770_18 crossref_primary_10_1093_jac_dki079 crossref_primary_10_1128_AAC_00251_07 crossref_primary_10_1111_jvp_12917 crossref_primary_10_1086_518137 crossref_primary_10_1128_AAC_00118_09 crossref_primary_10_1128_AAC_01017_09 crossref_primary_10_1016_j_ccm_2018_08_006 crossref_primary_10_1111_j_1469_0691_2004_00977_x crossref_primary_10_1128_microbiolspec_ARBA_0018_2017 crossref_primary_10_1086_344653 crossref_primary_10_1128_CMR_00047_06 crossref_primary_10_1097_01_revmedmi_0000131425_36224_59 crossref_primary_10_3389_fmicb_2021_738812 crossref_primary_10_1128_AAC_00369_06 crossref_primary_10_1128_AAC_46_3_913_916_2002 crossref_primary_10_3389_fphar_2022_874176 crossref_primary_10_3389_fmicb_2017_02344 crossref_primary_10_1016_j_diagmicrobio_2006_06_016 crossref_primary_10_1007_s10156_008_0589_0 crossref_primary_10_1093_cid_civ498 crossref_primary_10_1053_j_spid_2004_01_014 crossref_primary_10_1111_j_1469_0691_2007_01885_x crossref_primary_10_1186_1471_2334_10_171 crossref_primary_10_1186_s12879_021_06000_2 crossref_primary_10_1007_s40272_013_0017_5 crossref_primary_10_2165_00148581_200608020_00005 crossref_primary_10_1016_j_ddtec_2016_08_004 crossref_primary_10_1128_AAC_01484_10 crossref_primary_10_1111_j_1749_6632_2010_05828_x crossref_primary_10_1002_cpt_38 crossref_primary_10_1016_j_diagmicrobio_2007_01_004 crossref_primary_10_1016_j_drudis_2017_04_015 crossref_primary_10_1179_joc_2008_20_1_69 crossref_primary_10_3947_ic_2016_48_2_140 crossref_primary_10_5662_wjm_v14_i3_93930 crossref_primary_10_1002_cpt_1012 crossref_primary_10_1016_j_diagmicrobio_2005_10_004 crossref_primary_10_1093_cid_civ427 crossref_primary_10_1586_14789072_2_6_923 crossref_primary_10_1128_AAC_00318_07 crossref_primary_10_1128_AAC_02821_15 crossref_primary_10_3389_fphar_2021_682135 crossref_primary_10_2165_00148581_200810050_00006 crossref_primary_10_1128_AAC_01522_06 crossref_primary_10_1016_j_ijantimicag_2006_02_018 crossref_primary_10_1128_AAC_02606_18 crossref_primary_10_1093_cid_ciw472 crossref_primary_10_1128_AAC_49_5_1775_1781_2005 crossref_primary_10_1007_s00134_010_2105_0 crossref_primary_10_1016_S0195_6701_03_00294_9 crossref_primary_10_1016_j_jcrc_2018_11_016 crossref_primary_10_1186_1471_2334_6_55 crossref_primary_10_1093_cid_cit017 crossref_primary_10_1111_j_1469_0691_2009_02913_x crossref_primary_10_1016_j_diagmicrobio_2011_03_001 crossref_primary_10_1016_j_ijantimicag_2015_12_018 crossref_primary_10_1016_j_ijantimicag_2007_06_005 crossref_primary_10_1128_AAC_01584_08 crossref_primary_10_1016_j_ijantimicag_2007_06_001 crossref_primary_10_1016_j_diagmicrobio_2008_09_014 crossref_primary_10_1016_j_micpath_2019_103809 crossref_primary_10_1592_phco_23_15_1545_31969 crossref_primary_10_1016_S1570_0232_02_00084_3 crossref_primary_10_1016_j_clinthera_2005_11_007 crossref_primary_10_1016_S0924_8579_02_00020_1 crossref_primary_10_1128_AAC_02819_15 crossref_primary_10_2165_00151829_200504001_00004 crossref_primary_10_1007_s10156_003_0292_0 crossref_primary_10_1093_cid_ciw483 crossref_primary_10_1093_jac_dkh511 crossref_primary_10_1016_j_coph_2017_09_009 crossref_primary_10_1592_phco_2006_26_1_129 crossref_primary_10_1007_s00345_011_0757_1 crossref_primary_10_1128_AAC_48_5_1713_1718_2004 crossref_primary_10_1128_AAC_03549_14 crossref_primary_10_1128_AAC_00859_05 crossref_primary_10_1002_cpt_2205 crossref_primary_10_1016_S0924_8579_02_00028_6 crossref_primary_10_1128_AAC_00048_12 crossref_primary_10_1128_AAC_02367_19 crossref_primary_10_1016_j_drudis_2016_09_004 crossref_primary_10_1128_AAC_00296_07 crossref_primary_10_1093_jac_dkz089 crossref_primary_10_1128_AAC_02309_18 crossref_primary_10_3389_fphar_2022_890748 crossref_primary_10_1128_AAC_01781_17 crossref_primary_10_1128_AAC_48_12_4718_4724_2004 crossref_primary_10_1128_AAC_00936_09 crossref_primary_10_1016_j_clinthera_2007_05_018 crossref_primary_10_1080_23744235_2018_1423703 crossref_primary_10_1128_AAC_00851_12 crossref_primary_10_1586_eri_10_2 crossref_primary_10_1016_j_drup_2004_06_002 crossref_primary_10_1592_phco_23_3_291_32110 crossref_primary_10_1093_jac_dkab282 crossref_primary_10_1208_s12248_009_9138_8 crossref_primary_10_1128_AAC_01477_06 crossref_primary_10_1179_joc_2008_20_3_319 crossref_primary_10_1172_JCI200316814 crossref_primary_10_1016_j_ccc_2010_11_003 crossref_primary_10_1128_AAC_47_1_292_296_2003 crossref_primary_10_1592_phco_26_9_1320 crossref_primary_10_1016_j_diagmicrobio_2004_03_003 crossref_primary_10_1093_cid_ciy609 crossref_primary_10_3389_fphar_2022_769539 crossref_primary_10_1345_aph_1L473 crossref_primary_10_1007_s10156_007_0584_x crossref_primary_10_1089_sur_2007_001 crossref_primary_10_1111_j_1469_0691_2011_03752_x crossref_primary_10_1128_AAC_00337_06 crossref_primary_10_1128_AAC_01681_08 crossref_primary_10_1016_j_pan_2014_02_002 crossref_primary_10_1128_AAC_00976_12 crossref_primary_10_1128_AAC_49_9_3944_3947_2005 crossref_primary_10_1093_jacamr_dlab016 crossref_primary_10_1016_j_jhin_2004_12_017 crossref_primary_10_1128_AAC_00351_09 crossref_primary_10_1128_AAC_00749_10 crossref_primary_10_1111_j_1365_2710_2008_00908_x crossref_primary_10_1111_j_1469_0691_2005_01265_x crossref_primary_10_1128_AAC_47_5_1643_1646_2003 crossref_primary_10_1128_AAC_47_11_3561_3566_2003 crossref_primary_10_1093_infdis_jix212 crossref_primary_10_1093_infdis_jix211 crossref_primary_10_1128_AAC_01761_09 crossref_primary_10_1111_j_1365_2125_2010_03750_x crossref_primary_10_1128_AAC_02307_18 crossref_primary_10_1086_510590 crossref_primary_10_1007_s00134_017_4780_6 crossref_primary_10_1016_j_drup_2011_02_005 crossref_primary_10_1093_jac_dkz192 crossref_primary_10_1093_infdis_jiu610 crossref_primary_10_1097_QCO_0b013e3282f1bea3 crossref_primary_10_1128_AAC_00580_08 crossref_primary_10_1128_AAC_01084_06 crossref_primary_10_1016_S0891_5520_03_00062_X crossref_primary_10_1016_j_eimc_2010_12_009 crossref_primary_10_1016_j_diagmicrobio_2008_10_011 crossref_primary_10_1016_j_coph_2017_11_008 crossref_primary_10_1586_14787210_3_3_361 crossref_primary_10_1016_j_ejps_2019_01_033 crossref_primary_10_1128_AAC_03706_14 crossref_primary_10_1517_17460441_2_6_849 |
Cites_doi | 10.1128/AAC.43.3.623 10.1007/BF01117450 10.1128/AAC.35.7.1413 10.1128/AAC.31.7.1054 10.1086/515631 10.1016/S0002-9343(84)80074-1 10.1128/AAC.37.3.483 10.1016/S0732-8893(98)00105-9 10.1016/S0732-8893(98)00093-5 10.1093/infdis/147.5.910 10.1086/516284 10.1001/jama.279.2.125 10.1128/AAC.37.5.1073 |
ContentType | Journal Article |
Copyright | 2001 INIST-CNRS Copyright © 2001 American Society for Microbiology Copyright © 2001, American Society for Microbiology 2001 |
Copyright_xml | – notice: 2001 INIST-CNRS – notice: Copyright © 2001 American Society for Microbiology – notice: Copyright © 2001, American Society for Microbiology 2001 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL C1K 7X8 5PM |
DOI | 10.1128/aac.45.1.13-22.2001 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Bacteriology Abstracts (Microbiology B) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology Biology |
EISSN | 1098-6596 |
EndPage | 22 |
ExternalDocumentID | 10_1128_AAC_45_1_13_22_2001 0968 11120938 915423 aac_45_1_13 |
Genre | Journal Article |
GroupedDBID | --- .55 .GJ 08R 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 AAPBV AAUGY ACGFO ADBBV AENEX AFMIJ AGNAY AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 IQODW J5H K-O KQ8 L7B LSO MVM NEJ O9- OK1 P2P RHF RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZA5 ZGI ZXP ~A~ AGVNZ CGR CUY CVF ECM EIF NPM - 0R 55 ABFLS ADACO BXI GJ HZ AAYXX CITATION 7QL C1K 7X8 5PM |
ID | FETCH-LOGICAL-a639t-2d91a2eef2878d3aaa3eb07e5f1777da174ec3465a62a170c889e3c660052e23 |
IEDL.DBID | RPM |
ISSN | 0066-4804 |
IngestDate | Tue Sep 17 20:34:07 EDT 2024 Thu Oct 24 23:51:52 EDT 2024 Fri Oct 25 07:58:50 EDT 2024 Thu Nov 21 21:13:40 EST 2024 Tue Dec 28 13:59:11 EST 2021 Sat Sep 28 07:35:07 EDT 2024 Sun Oct 22 16:07:04 EDT 2023 Wed May 18 15:26:58 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Monte Carlo method Intravenous administration Oligosaccharide Rodentia Preclinical trial Normal In vitro Biological activity In vivo Vertebrata Antibiotic Mammalia Simulation Mouse Animal Minimum inhibitory concentration Antiinfectious Antibacterial agent Mathematical model Pharmacokinetics |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a639t-2d91a2eef2878d3aaa3eb07e5f1777da174ec3465a62a170c889e3c660052e23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Corresponding author. Mailing address: Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208. Phone: (518) 262-6330. Fax: (518) 262-6333. E-mail: GLDRUSANO@AOL.COM. |
OpenAccessLink | https://doi.org/10.1128/aac.45.1.13-22.2001 |
PMID | 11120938 |
PQID | 17762064 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_70553587 pascalfrancis_primary_915423 proquest_miscellaneous_17762064 asm2_journals_10_1128_AAC_45_1_13_22_2001 crossref_primary_10_1128_AAC_45_1_13_22_2001 pubmed_primary_11120938 pubmedcentral_primary_oai_pubmedcentral_nih_gov_90233 highwire_asm_aac_45_1_13 |
PublicationCentury | 2000 |
PublicationDate | 20010101 2001 2001-Jan 2001-01-00 |
PublicationDateYYYYMMDD | 2001-01-01 |
PublicationDate_xml | – month: 01 year: 2001 text: 20010101 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Antimicrobial Agents and Chemotherapy |
PublicationTitleAbbrev | Antimicrob. Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2001 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 11152427 - J Antimicrob Chemother. 2001 Jan;47(1):15-25 1929302 - Antimicrob Agents Chemother. 1991 Jul;35(7):1413-22 9697715 - J Infect Dis. 1998 Aug;178(2):360-7 3116917 - Antimicrob Agents Chemother. 1987 Jul;31(7):1054-60 6097124 - Am J Med. 1984 Dec 21;77(6A):43-50 8874628 - AIDS. 1996 Sep;10(10):1113-9 9440662 - JAMA. 1998 Jan 14;279(2):125-9 8384815 - Antimicrob Agents Chemother. 1993 Mar;37(3):483-90 9455502 - Clin Infect Dis. 1998 Jan;26(1):1-10; quiz 11-2 10049277 - Antimicrob Agents Chemother. 1999 Mar;43(3):623-9 8517694 - Antimicrob Agents Chemother. 1993 May;37(5):1073-81 10354859 - Diagn Microbiol Infect Dis. 1999 Jun;34(2):103-10 671222 - J Pharmacokinet Biopharm. 1978 Apr;6(2):165-75 6842025 - J Infect Dis. 1983 May;147(5):910-7 9990471 - Diagn Microbiol Infect Dis. 1999 Jan;33(1):19-25 Yamaoka, K., Nakagawa, T., Uno, T. (B16) 1978; 6 Blaser, J., Stone, B. B., Groner, M. C., Zinner, S. H. (B1) 1987; 31 Jones, R. N., Marshall, S. A., Erwin, M. E. (B10) 1999; 34 Drusano, G. L., Johnson, D. E., Rosen, M., Standiford, H. C. (B6) 1993; 37 B9a Schentag, J. J., Smith, I. L., Swanson, D. J., DeAngelis, C., Fracasso, J. E., Vari, A., Vance, J. W. (B14) 1984; 77 Schumitzky, A. (B15) 1991; 45 Preston, S. L., Drusano, G. L., Berman, A. L., Fowler, C. L., Chow, A. T., Dornseif, B., Reichl, V., Natarajan, J., Corrado, M. (B13) 1998; 279 Craig, W. A. (B2) 1998; 26 B3 Fantin, B., Leggett, J., Ebert, S., Craig, W. A. (B7) 1991; 35 Kashuba, A. D., Nafziger, A. N., Drusano, G. L., Bertino, J. S. (B11) 1999; 43 Forrest, A., Nix, D. E., Ballow, C. H., Goss, T. F., Birmingham, M. C., Schentag, J. J. (B8) 1993; 37 Drusano, G. L., Aweeka, F., Gambertoglio, J., Jacobson, M., Polis, M., Lane, H. C., Eaton, C., Martin-Munley, S. (B4) 1996; 10 Drusano, G. L., Bilello, J. A., Stein, D. S., Nessly, M., Meibohm, A., Emini, E. A., Deutsch, P., Condra, J., Chodakewitz, J., Holder, D. J. (B5) 1998; 178 Gerber, A. U., Craig, W. A., Brugger, H. P., Feller, C., Vastola, A. P., Brandel, J. (B9) 1983; 147 Marshall, S. A., Jones, R. N., Ewin, M. E. (B12) 1999; 33 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 Drusano G. L. (e_1_3_2_6_2) 1998; 178 Schentag J. J. (e_1_3_2_16_2) 1984; 77 Gerber A. U. (e_1_3_2_10_2) 1983; 147 Drusano G. L. (e_1_3_2_5_2) 1996; 10 Schumitzky A. (e_1_3_2_17_2) 1991; 45 Jones R. N. (e_1_3_2_12_2) 1999; 34 Marshall S. A. (e_1_3_2_14_2) 1999; 33 |
References_xml | – volume: 37 start-page: 1073 year: 1993 end-page: 1081 ident: B8 article-title: Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. publication-title: Antimicrob. Agents Chemother. contributor: fullname: Schentag, J. J. – volume: 33 start-page: 19 year: 1999 end-page: 25 ident: B12 article-title: Antimicrobial activity of SCH27899 (Ziracin), a novel everninomycin derivative, tested against Streptococcus spp.: disk diffusion-test method evaluations and quality control guidelines: Quality Control Study Group. publication-title: Diagn. Microbiol. Infect. Dis. contributor: fullname: Ewin, M. E. – ident: B9a article-title: Jones, R. N., R. S. Hare, F. J. Sabatelli, and the Ziracin Susceptibility Testing Group. In vitro Gram-positive antimicrobial activity of evernimicin (SCH 27899), a novel oligosaccharide, compared with other antimicrobials: a multicentre international trial. J. Antimicrob. Chemother., in press. – volume: 178 start-page: 360 year: 1998 end-page: 367 ident: B5 article-title: Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables. publication-title: J. Infect. Dis. contributor: fullname: Holder, D. J. – volume: 45 start-page: 141 year: 1991 end-page: 157 ident: B15 article-title: Nonparametric EM algorithms for estimating prior distributions. publication-title: Appl. Math. Comput. contributor: fullname: Schumitzky, A. – volume: 35 start-page: 1413 year: 1991 end-page: 1422 ident: B7 article-title: Correlation between in vitro and in vivo activity of antimicrobial agents against gram-negative bacilli in a murine infection model. publication-title: Antimicrob. Agents Chemother. contributor: fullname: Craig, W. A. – volume: 6 start-page: 165 year: 1978 end-page: 175 ident: B16 article-title: Application of Akaike's Information Criterion (AIC) in the evaluation of linear pharmacokinetic equations. publication-title: J. Pharmacokinet Biopharm. contributor: fullname: Uno, T. – volume: 31 start-page: 1054 year: 1987 end-page: 1060 ident: B1 article-title: Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. publication-title: Antimicrob. Agents Chemother. contributor: fullname: Zinner, S. H. – volume: 77 start-page: 43 year: 1984 end-page: 50 ident: B14 article-title: Role for dual individualization with cefmenoxime. publication-title: Am. J. Med. contributor: fullname: Vance, J. W. – volume: 37 start-page: 483 year: 1993 end-page: 490 ident: B6 article-title: Pharmacodynamics of a fluoroquinolone antimicrobial in a neutropenic rat model of Pseudomonas sepsis. publication-title: Antimicrob. Agents Chemother. contributor: fullname: Standiford, H. C. – volume: 43 start-page: 623 year: 1999 end-page: 629 ident: B11 article-title: Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. publication-title: Antimicrob. Agents Chemother. contributor: fullname: Bertino, J. S. – volume: 34 start-page: 103 year: 1999 end-page: 110 ident: B10 article-title: Antimicrobial activity and spectrum of SCH27899 (Ziracin) tested against gram-positive species, including recommendations for routine susceptibility testing methods and quality control. Quality Control Study Group. publication-title: Diagn. Microbiol. Infect. Dis. contributor: fullname: Erwin, M. E. – volume: 279 start-page: 125 year: 1998 end-page: 129 ident: B13 article-title: Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. publication-title: JAMA contributor: fullname: Corrado, M. – volume: 147 start-page: 910 year: 1983 end-page: 917 ident: B9 article-title: Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. publication-title: J. Infect. Dis. contributor: fullname: Brandel, J. – volume: 10 start-page: 1113 year: 1996 end-page: 1119 ident: B4 article-title: Relationship between foscarnet exposure, baseline cytomegalovirus blood culture and the time to progression of cytomegalovirus retinitis in HIV-positive patients. publication-title: AIDS contributor: fullname: Martin-Munley, S. – ident: B3 article-title: D'Argenio D. Z. Schumitzky A. ADAPT II user's guide. 1995 University of Southern California Los Angeles – volume: 26 start-page: 1 year: 1998 end-page: 10 ident: B2 article-title: Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. publication-title: Clin. Infect. Dis. contributor: fullname: Craig, W. A. – ident: e_1_3_2_13_2 doi: 10.1128/AAC.43.3.623 – ident: e_1_3_2_18_2 doi: 10.1007/BF01117450 – ident: e_1_3_2_8_2 doi: 10.1128/AAC.35.7.1413 – ident: e_1_3_2_2_2 doi: 10.1128/AAC.31.7.1054 – volume: 45 start-page: 141 year: 1991 ident: e_1_3_2_17_2 article-title: Nonparametric EM algorithms for estimating prior distributions. publication-title: Appl. Math. Comput. contributor: fullname: Schumitzky A. – volume: 178 start-page: 360 year: 1998 ident: e_1_3_2_6_2 article-title: Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables. publication-title: J. Infect. Dis. doi: 10.1086/515631 contributor: fullname: Drusano G. L. – volume: 77 start-page: 43 year: 1984 ident: e_1_3_2_16_2 article-title: Role for dual individualization with cefmenoxime. publication-title: Am. J. Med. doi: 10.1016/S0002-9343(84)80074-1 contributor: fullname: Schentag J. J. – ident: e_1_3_2_7_2 doi: 10.1128/AAC.37.3.483 – volume: 10 start-page: 1113 year: 1996 ident: e_1_3_2_5_2 article-title: Relationship between foscarnet exposure, baseline cytomegalovirus blood culture and the time to progression of cytomegalovirus retinitis in HIV-positive patients. publication-title: AIDS contributor: fullname: Drusano G. L. – volume: 33 start-page: 19 year: 1999 ident: e_1_3_2_14_2 article-title: Antimicrobial activity of SCH27899 (Ziracin), a novel everninomycin derivative, tested against Streptococcus spp.: disk diffusion-test method evaluations and quality control guidelines: Quality Control Study Group. publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/S0732-8893(98)00105-9 contributor: fullname: Marshall S. A. – ident: e_1_3_2_4_2 – volume: 34 start-page: 103 year: 1999 ident: e_1_3_2_12_2 article-title: Antimicrobial activity and spectrum of SCH27899 (Ziracin) tested against gram-positive species, including recommendations for routine susceptibility testing methods and quality control. Quality Control Study Group. publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/S0732-8893(98)00093-5 contributor: fullname: Jones R. N. – volume: 147 start-page: 910 year: 1983 ident: e_1_3_2_10_2 article-title: Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. publication-title: J. Infect. Dis. doi: 10.1093/infdis/147.5.910 contributor: fullname: Gerber A. U. – ident: e_1_3_2_11_2 – ident: e_1_3_2_3_2 doi: 10.1086/516284 – ident: e_1_3_2_15_2 doi: 10.1001/jama.279.2.125 – ident: e_1_3_2_9_2 doi: 10.1128/AAC.37.5.1073 |
SSID | ssj0006590 |
Score | 2.1911047 |
Snippet | Classifications
Services
AAC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on... |
SourceID | pubmedcentral proquest crossref asm2 pubmed pascalfrancis highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 13 |
SubjectTerms | Aminoglycosides Animals Anti-Bacterial Agents Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - pharmacokinetics Anti-Bacterial Agents - pharmacology Antibacterial agents Antibiotics. Antiinfectious agents. Antiparasitic agents Area Under Curve Bacterial Infections - chemically induced Bacterial Infections - microbiology Biological and medical sciences Clinical Trials, Phase II as Topic Clinical Trials, Phase III as Topic Enterococcus faecalis Enterococcus faecium Evernimicin Experimental Therapeutics Gram-Positive Bacteria - drug effects Medical sciences Methicillin Resistance Mice Microbial Sensitivity Tests Monte Carlo Method Oligosaccharides - pharmacology Pharmacology. Drug treatments Protein Binding Staphylococcus aureus Staphylococcus aureus - drug effects Streptococcus pneumoniae |
Title | Use of Preclinical Data for Selection of a Phase II/III Dose for Evernimicin and Identification of a Preclinical MIC Breakpoint |
URI | http://aac.asm.org/content/45/1/13.abstract https://www.ncbi.nlm.nih.gov/pubmed/11120938 https://journals.asm.org/doi/10.1128/AAC.45.1.13-22.2001 https://search.proquest.com/docview/17762064 https://search.proquest.com/docview/70553587 https://pubmed.ncbi.nlm.nih.gov/PMC90233 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7RSiAuCMpjAwv4gFZCapLajvM4lrarzWFRpS0SN8txHG0FTSrSHnrirzPOY7tFwAEph0QZJ25nxjPjzHwD8AFtSKgnPHMTbUG1qeZuxkTmiphp9LZF1uJsX91En7_G84WFyeF9LUyTtK-ztVd-33jl-rbJrdxutN_nifnL61mChob7AxigZ9gH6N3iG4p2WwUtqRvEk6ADGsJV2J9OZ14gPOpR7rIGg7JpE0Nt9agtTxmqesNOzVMPGWwzJlWNf1rRdrv4kzv6e1blPTN1-RSedP4lmba_4xk8MOUIHrYdJw8jeHTdfUsfwcWyRa0-jMnqWIRVj8kFWR7xrA_P4eeX2pCqIEtcHLs6SjJXO0XQ3yU3TR8dZK6lUHYkEqepn6YpmVd4bokWtp_vemNfTFSZk7Y6uOi2C7uR956OokE-oTf7bVuty90LWF0uVrMrt-vb4Cr0d3YuyxOqmDEFRmNxzpVS3GSTyIiCRlGUKwyCjOZBKFTI8GKi4zgxXIeh3aM2jL-EYVmV5gyIKbKEJhj8U5YHRlkw-0xH2gg8Ra4VDny0TJOd3tWyCWlYLJHXMhCSSsolY7bXJnVg3HNWblskj3-Tn_Xcl_gOqZTuSRw4P5GGu8fh9NA7deB9LxwSddV-gFGlqfY4uwhND_qAf6ew2EZcxJEDr1phOk61k1MHxImY3RFYnPDTO6g-DV54oy6v_3PcG3jcpt3Z4xyGux978xYGdb5_12jeL-n-LVI |
link.rule.ids | 230,315,729,782,786,887,4028,27932,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xRbBceJTHBhbWB7QSUpMmdpzHsbRdNWK7qrRF4mY5jiMqtmlF2kNP_HXGeWy3CDislEOijB0n_uwZOzPfAHxEHRIol6V2rAyptqeYnVKe2jyiCq1tntY825Pr8OpbNBobmhzWxsJUTvsqXTjFzdIpFt8r38r1UvVbP7H-bDqMUdGw_hE8xNHquu0SvZl-A15vrKAutf3I9RuqIZyH-4PB0PG54zkes2nFQlklivFM_KgJUOnIckkPFVRLGmx8JmWJny2v8138zSD906_yjqK6eHavV3wOTxu7lAzqmy_ggS668KjOVLnrwuNp8w--C-ezmu161yPzffBW2SPnZLbnwd69hF9fS01WOZnhpNrEX5KR3EiCdjK5rvLvICiMhDQlUThJ-kmSkNEKz43Q2OQBXizNg4ksMlJHFefNNmNT8k7tCCnyGa3gH-vVoti8gvnFeD6c2E2-B1uinbSxaRZ7kmqd4youypiUkunUDTXPvTAMM4mLJ62YH3AZULxwVRTFmqkgMHvbmrLX0ClWhT4BovM09mKdol7OfC0NCX6qQqU5nmJf5xZ8Ml0tmvFaimopRCOBCBE-F57wmKDU5Oj0LOi1eBDrmgHk_-InLWYEPkNIqVoRC04PMHRbHTYPrVoLzlpICRzj5seNLPRqi60LUWWh7fhvCcOJxHgUWvCmhuC-qQ26LeAH4LwVMPzih3cQkxXPeIXBt_csdwbHk_n0UlwmV1_ewZPadc8cp9DZ_Nzq93BUZtsP1dj9DfxIQmk |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xRay48CgsG1hYH9BKSE3T2HEex9KHNoJdRdoicbMcxxEVNKlIe-iJv844j-0WAYeVckiUcewknz1je-YbgPeoQ3w1YqkdKUOq7Spmp5SnNg-pQmubpw3P9uVNcP01nM4MTU7QxcLUTvsqXQ6LH6thsfxW-1auV8rp_MSc5GoSoaJhzjrLnSN4iD12RLtpejsE-7xZXEF9anvhyGvphnAsdsbjydDjQ3foMpvWTJR1shjXxJCaIJWerFb0UEl1xMHGb1JW-OnyJufF34zSP30r7yir-dN7v-YzeNLap2TcCDyHB7row6MmY-WuD8dX7V58Hy6ShvV6NyCLfRBXNSAXJNnzYe9ewK8vlSZlThIcXNs4TDKVG0nQXiY3dR4eBIeRkKYkCsexE8cxmZZ4boRmJh_wcmUqJrLISBNdnLfLjW3JO09HaJGPaA1_X5fLYvMSFvPZYnJpt3kfbIn20samWeRKqnWOs7kwY1JKptNRoHnuBkGQSZxEacU8n0uf4sVIhWGkmfJ9s8atKTuBXlEW-hSIztPIjXSK-jnztDRk-KkKlOZ4iv87t-CD-d2i7beVqKdENBSIEuFx4QqXCUpNrk7XgkGHCbFumED-L37a4UZgHUJK1YlYcHaAo9vHYfPQurXgvIOVwL5uNnBkocstti5A1YU25L8lDDcS42FgwasGhvumtgi3gB8A9FbA8Iwf3kFc1nzjNQ5f37PcORwn07n4HF9_egOPGw8-c5xBb_Nzq9_CUZVt39Xd9zclWkTp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+preclinical+data+for+selection+of+a+phase+II%2FIII+dose+for+evernimicin+and+identification+of+a+preclinical+MIC+breakpoint&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=DRUSANO%2C+G.+L&rft.au=PRESTON%2C+S.+L&rft.au=HARDALO%2C+C&rft.au=HARE%2C+R&rft.date=2001&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=45&rft.issue=1&rft.spage=13&rft.epage=22&rft_id=info:doi/10.1128%2Faac.45.1.13-22.2001&rft.externalDBID=n%2Fa&rft.externalDocID=915423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |