Use of Preclinical Data for Selection of a Phase II/III Dose for Evernimicin and Identification of a Preclinical MIC Breakpoint

Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commerc...

Full description

Saved in:
Bibliographic Details
Published in:Antimicrobial Agents and Chemotherapy Vol. 45; no. 1; pp. 13 - 22
Main Authors: DRUSANO, G. L, PRESTON, S. L, HARDALO, C, HARE, R, BANFIELD, C, ANDES, D, VESGA, O, CRAIG, W. A
Format: Journal Article
Language:English
Published: Washington, DC American Society for Microbiology 01-01-2001
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AAC .asm.org, visit: AAC       
AbstractList One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis (n = 2), and S. aureus (n = 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10(7) CFU), log killing (pathogen dependent, ranging from 1 to 3 log(10)), or 90% maximal killing effect (90% E(max)). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90% E(max) AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints.
One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis (n = 2), and S. aureus (n = 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10 super(7) CFU), log killing (pathogen dependent, ranging from 1 to 3 log sub(10)), or 90% maximal killing effect (90% E sub(max)). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90% E sub(max) AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints.
One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number ( n = 4,543) of recent clinical isolates of gram-positive pathogens ( Streptococcus pneumoniae , Enterococcus faecalis and Enterococcus faecium , and Staphylococcus aureus ) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers ( n = 40) and patients with hypoalbuminemia ( n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae ( n = 5), E. faecalis ( n = 2), and S. aureus ( n = 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10 7 CFU), log killing (pathogen dependent, ranging from 1 to 3 log 10 ), or 90% maximal killing effect (90% E max ). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae , the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing ( S. aureus ), 1 log killing (enterococci), or 90% E max AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints.
One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n = 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae,Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n = 40) and patients with hypoalbuminemia (n = 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n = 5), E. faecalis(n = 2), and S. aureus (n= 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (107 CFU), log killing (pathogen dependent, ranging from 1 to 3 log10), or 90% maximal killing effect (90%Emax). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6- and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90%Emax AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints.
Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue AAC About AAC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AAC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0066-4804 Online ISSN: 1098-6596 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AAC .asm.org, visit: AAC       
Author C. Hardalo
W. A. Craig
R. Hare
S. L. Preston
C. Banfield
D. Andes
G. L. Drusano
O. Vesga
AuthorAffiliation Division of Clinical Pharmacology, Albany Medical College, Albany, New York 1 ; Schering Plough Research Institute, Kenilworth, New Jersey 2 ; and Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin 3
AuthorAffiliation_xml – name: Division of Clinical Pharmacology, Albany Medical College, Albany, New York 1 ; Schering Plough Research Institute, Kenilworth, New Jersey 2 ; and Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin 3
Author_xml – sequence: 1
  givenname: G. L
  surname: DRUSANO
  fullname: DRUSANO, G. L
  organization: Division of Clinical Pharmacology, Albany Medical College, Albany, New York, United States
– sequence: 2
  givenname: S. L
  surname: PRESTON
  fullname: PRESTON, S. L
  organization: Division of Clinical Pharmacology, Albany Medical College, Albany, New York, United States
– sequence: 3
  givenname: C
  surname: HARDALO
  fullname: HARDALO, C
  organization: Schering Plough Research Institute, Kenilworth, New Jersey, United Kingdom
– sequence: 4
  givenname: R
  surname: HARE
  fullname: HARE, R
  organization: Schering Plough Research Institute, Kenilworth, New Jersey, United Kingdom
– sequence: 5
  givenname: C
  surname: BANFIELD
  fullname: BANFIELD, C
  organization: Schering Plough Research Institute, Kenilworth, New Jersey, United Kingdom
– sequence: 6
  givenname: D
  surname: ANDES
  fullname: ANDES, D
  organization: Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin, United States
– sequence: 7
  givenname: O
  surname: VESGA
  fullname: VESGA, O
  organization: Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin, United States
– sequence: 8
  givenname: W. A
  surname: CRAIG
  fullname: CRAIG, W. A
  organization: Division of Clinical Pharmacology, University of Wisconsin, Madison, Wisconsin, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=915423$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11120938$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFX4AEkZC4JfVH7CQSl2VbIFIRlShna-pMui6JvdjZIk78dRztUpZTT_bIzzvzemZOyJHzDgl5yWjBGK_PAExRyoIVTOScF5xS9oQsGG3qXMlGHZEFpUrlZU3LY3IS4x1NsWzoM3LMUgLaiHpBfn-LmPk-uwpoBuusgSE7hwmy3ofsKw5oJuvdTEB2tYYEt-1Z27bZuU_3Gbq4x-DsaI11Gbguazt0k-1TpgPlQfbP7Sp7HxC-b7x103PytIch4ov9eUquP1xcrz7ll18-tqvlZQ5KNFPOu4YBR-x5XdWdAACBN7RC2bOqqjpgVYlGlEqC4imgpq4bFEYpSiVHLk7Ju13azfZmxM4kiwEGvQl2hPBLe7D6_xdn1_rW3-uGciGS_O1eHvyPLcZJjzYaHAZw6LdRV1RKIevqUTC5VZyqMoFiB5rgYwzYP3hhVM_j1cvlSpdSM82E5lzP400qulNBHLm-89vgUtMekbw6_Pm_MvsVSMCbPQAxzacP4IyND1zDZMnnDrzeUWt7u_5pA-pkQacV_FtQ_AHkIciJ
CODEN AACHAX
CitedBy_id crossref_primary_10_1097_00013542_200207000_00002
crossref_primary_10_1345_aph_1A419
crossref_primary_10_1016_j_diagmicrobio_2010_06_012
crossref_primary_10_1016_S0149_2918_04_80001_8
crossref_primary_10_1016_j_aquaculture_2008_07_029
crossref_primary_10_1016_j_aquaculture_2021_737119
crossref_primary_10_1097_01_inf_0000094940_81959_14
crossref_primary_10_1002_jcph_1074
crossref_primary_10_1128_AAC_01410_06
crossref_primary_10_1016_j_ijantimicag_2020_106113
crossref_primary_10_1038_nrmicro862
crossref_primary_10_1128_aac_01401_22
crossref_primary_10_1586_ecp_13_6
crossref_primary_10_1016_S0891_5520_03_00061_8
crossref_primary_10_1016_j_ijid_2016_06_017
crossref_primary_10_1128_aac_00898_22
crossref_primary_10_1186_s12917_015_0343_7
crossref_primary_10_1186_1742_4682_6_10
crossref_primary_10_1097_00001432_200412000_00005
crossref_primary_10_1007_s15010_009_7108_9
crossref_primary_10_3390_antibiotics10121485
crossref_primary_10_1007_s40262_016_0418_z
crossref_primary_10_1124_pr_111_005769
crossref_primary_10_1128_JCM_00837_11
crossref_primary_10_1089_sur_2006_025
crossref_primary_10_1128_AAC_45_12_3468_3473_2001
crossref_primary_10_1016_j_clinthera_2005_06_013
crossref_primary_10_1016_j_diagmicrobio_2004_08_019
crossref_primary_10_1128_AAC_01474_09
crossref_primary_10_1016_j_diagmicrobio_2020_115039
crossref_primary_10_1592_phco_27_3_333
crossref_primary_10_2147_IDR_S284754
crossref_primary_10_2146_ajhp050210
crossref_primary_10_1093_jac_dkw057
crossref_primary_10_1016_j_eimc_2010_05_008
crossref_primary_10_1128_AAC_49_10_4009_4014_2005
crossref_primary_10_1128_AAC_00770_18
crossref_primary_10_1093_jac_dki079
crossref_primary_10_1128_AAC_00251_07
crossref_primary_10_1111_jvp_12917
crossref_primary_10_1086_518137
crossref_primary_10_1128_AAC_00118_09
crossref_primary_10_1128_AAC_01017_09
crossref_primary_10_1016_j_ccm_2018_08_006
crossref_primary_10_1111_j_1469_0691_2004_00977_x
crossref_primary_10_1128_microbiolspec_ARBA_0018_2017
crossref_primary_10_1086_344653
crossref_primary_10_1128_CMR_00047_06
crossref_primary_10_1097_01_revmedmi_0000131425_36224_59
crossref_primary_10_3389_fmicb_2021_738812
crossref_primary_10_1128_AAC_00369_06
crossref_primary_10_1128_AAC_46_3_913_916_2002
crossref_primary_10_3389_fphar_2022_874176
crossref_primary_10_3389_fmicb_2017_02344
crossref_primary_10_1016_j_diagmicrobio_2006_06_016
crossref_primary_10_1007_s10156_008_0589_0
crossref_primary_10_1093_cid_civ498
crossref_primary_10_1053_j_spid_2004_01_014
crossref_primary_10_1111_j_1469_0691_2007_01885_x
crossref_primary_10_1186_1471_2334_10_171
crossref_primary_10_1186_s12879_021_06000_2
crossref_primary_10_1007_s40272_013_0017_5
crossref_primary_10_2165_00148581_200608020_00005
crossref_primary_10_1016_j_ddtec_2016_08_004
crossref_primary_10_1128_AAC_01484_10
crossref_primary_10_1111_j_1749_6632_2010_05828_x
crossref_primary_10_1002_cpt_38
crossref_primary_10_1016_j_diagmicrobio_2007_01_004
crossref_primary_10_1016_j_drudis_2017_04_015
crossref_primary_10_1179_joc_2008_20_1_69
crossref_primary_10_3947_ic_2016_48_2_140
crossref_primary_10_5662_wjm_v14_i3_93930
crossref_primary_10_1002_cpt_1012
crossref_primary_10_1016_j_diagmicrobio_2005_10_004
crossref_primary_10_1093_cid_civ427
crossref_primary_10_1586_14789072_2_6_923
crossref_primary_10_1128_AAC_00318_07
crossref_primary_10_1128_AAC_02821_15
crossref_primary_10_3389_fphar_2021_682135
crossref_primary_10_2165_00148581_200810050_00006
crossref_primary_10_1128_AAC_01522_06
crossref_primary_10_1016_j_ijantimicag_2006_02_018
crossref_primary_10_1128_AAC_02606_18
crossref_primary_10_1093_cid_ciw472
crossref_primary_10_1128_AAC_49_5_1775_1781_2005
crossref_primary_10_1007_s00134_010_2105_0
crossref_primary_10_1016_S0195_6701_03_00294_9
crossref_primary_10_1016_j_jcrc_2018_11_016
crossref_primary_10_1186_1471_2334_6_55
crossref_primary_10_1093_cid_cit017
crossref_primary_10_1111_j_1469_0691_2009_02913_x
crossref_primary_10_1016_j_diagmicrobio_2011_03_001
crossref_primary_10_1016_j_ijantimicag_2015_12_018
crossref_primary_10_1016_j_ijantimicag_2007_06_005
crossref_primary_10_1128_AAC_01584_08
crossref_primary_10_1016_j_ijantimicag_2007_06_001
crossref_primary_10_1016_j_diagmicrobio_2008_09_014
crossref_primary_10_1016_j_micpath_2019_103809
crossref_primary_10_1592_phco_23_15_1545_31969
crossref_primary_10_1016_S1570_0232_02_00084_3
crossref_primary_10_1016_j_clinthera_2005_11_007
crossref_primary_10_1016_S0924_8579_02_00020_1
crossref_primary_10_1128_AAC_02819_15
crossref_primary_10_2165_00151829_200504001_00004
crossref_primary_10_1007_s10156_003_0292_0
crossref_primary_10_1093_cid_ciw483
crossref_primary_10_1093_jac_dkh511
crossref_primary_10_1016_j_coph_2017_09_009
crossref_primary_10_1592_phco_2006_26_1_129
crossref_primary_10_1007_s00345_011_0757_1
crossref_primary_10_1128_AAC_48_5_1713_1718_2004
crossref_primary_10_1128_AAC_03549_14
crossref_primary_10_1128_AAC_00859_05
crossref_primary_10_1002_cpt_2205
crossref_primary_10_1016_S0924_8579_02_00028_6
crossref_primary_10_1128_AAC_00048_12
crossref_primary_10_1128_AAC_02367_19
crossref_primary_10_1016_j_drudis_2016_09_004
crossref_primary_10_1128_AAC_00296_07
crossref_primary_10_1093_jac_dkz089
crossref_primary_10_1128_AAC_02309_18
crossref_primary_10_3389_fphar_2022_890748
crossref_primary_10_1128_AAC_01781_17
crossref_primary_10_1128_AAC_48_12_4718_4724_2004
crossref_primary_10_1128_AAC_00936_09
crossref_primary_10_1016_j_clinthera_2007_05_018
crossref_primary_10_1080_23744235_2018_1423703
crossref_primary_10_1128_AAC_00851_12
crossref_primary_10_1586_eri_10_2
crossref_primary_10_1016_j_drup_2004_06_002
crossref_primary_10_1592_phco_23_3_291_32110
crossref_primary_10_1093_jac_dkab282
crossref_primary_10_1208_s12248_009_9138_8
crossref_primary_10_1128_AAC_01477_06
crossref_primary_10_1179_joc_2008_20_3_319
crossref_primary_10_1172_JCI200316814
crossref_primary_10_1016_j_ccc_2010_11_003
crossref_primary_10_1128_AAC_47_1_292_296_2003
crossref_primary_10_1592_phco_26_9_1320
crossref_primary_10_1016_j_diagmicrobio_2004_03_003
crossref_primary_10_1093_cid_ciy609
crossref_primary_10_3389_fphar_2022_769539
crossref_primary_10_1345_aph_1L473
crossref_primary_10_1007_s10156_007_0584_x
crossref_primary_10_1089_sur_2007_001
crossref_primary_10_1111_j_1469_0691_2011_03752_x
crossref_primary_10_1128_AAC_00337_06
crossref_primary_10_1128_AAC_01681_08
crossref_primary_10_1016_j_pan_2014_02_002
crossref_primary_10_1128_AAC_00976_12
crossref_primary_10_1128_AAC_49_9_3944_3947_2005
crossref_primary_10_1093_jacamr_dlab016
crossref_primary_10_1016_j_jhin_2004_12_017
crossref_primary_10_1128_AAC_00351_09
crossref_primary_10_1128_AAC_00749_10
crossref_primary_10_1111_j_1365_2710_2008_00908_x
crossref_primary_10_1111_j_1469_0691_2005_01265_x
crossref_primary_10_1128_AAC_47_5_1643_1646_2003
crossref_primary_10_1128_AAC_47_11_3561_3566_2003
crossref_primary_10_1093_infdis_jix212
crossref_primary_10_1093_infdis_jix211
crossref_primary_10_1128_AAC_01761_09
crossref_primary_10_1111_j_1365_2125_2010_03750_x
crossref_primary_10_1128_AAC_02307_18
crossref_primary_10_1086_510590
crossref_primary_10_1007_s00134_017_4780_6
crossref_primary_10_1016_j_drup_2011_02_005
crossref_primary_10_1093_jac_dkz192
crossref_primary_10_1093_infdis_jiu610
crossref_primary_10_1097_QCO_0b013e3282f1bea3
crossref_primary_10_1128_AAC_00580_08
crossref_primary_10_1128_AAC_01084_06
crossref_primary_10_1016_S0891_5520_03_00062_X
crossref_primary_10_1016_j_eimc_2010_12_009
crossref_primary_10_1016_j_diagmicrobio_2008_10_011
crossref_primary_10_1016_j_coph_2017_11_008
crossref_primary_10_1586_14787210_3_3_361
crossref_primary_10_1016_j_ejps_2019_01_033
crossref_primary_10_1128_AAC_03706_14
crossref_primary_10_1517_17460441_2_6_849
Cites_doi 10.1128/AAC.43.3.623
10.1007/BF01117450
10.1128/AAC.35.7.1413
10.1128/AAC.31.7.1054
10.1086/515631
10.1016/S0002-9343(84)80074-1
10.1128/AAC.37.3.483
10.1016/S0732-8893(98)00105-9
10.1016/S0732-8893(98)00093-5
10.1093/infdis/147.5.910
10.1086/516284
10.1001/jama.279.2.125
10.1128/AAC.37.5.1073
ContentType Journal Article
Copyright 2001 INIST-CNRS
Copyright © 2001 American Society for Microbiology
Copyright © 2001, American Society for Microbiology 2001
Copyright_xml – notice: 2001 INIST-CNRS
– notice: Copyright © 2001 American Society for Microbiology
– notice: Copyright © 2001, American Society for Microbiology 2001
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
C1K
7X8
5PM
DOI 10.1128/aac.45.1.13-22.2001
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Bacteriology Abstracts (Microbiology B)
CrossRef



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
Biology
EISSN 1098-6596
EndPage 22
ExternalDocumentID 10_1128_AAC_45_1_13_22_2001
0968
11120938
915423
aac_45_1_13
Genre Journal Article
GroupedDBID ---
.55
.GJ
08R
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAPBV
AAUGY
ACGFO
ADBBV
AENEX
AFMIJ
AGNAY
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
IQODW
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZA5
ZGI
ZXP
~A~
AGVNZ
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
55
ABFLS
ADACO
BXI
GJ
HZ
AAYXX
CITATION
7QL
C1K
7X8
5PM
ID FETCH-LOGICAL-a639t-2d91a2eef2878d3aaa3eb07e5f1777da174ec3465a62a170c889e3c660052e23
IEDL.DBID RPM
ISSN 0066-4804
IngestDate Tue Sep 17 20:34:07 EDT 2024
Thu Oct 24 23:51:52 EDT 2024
Fri Oct 25 07:58:50 EDT 2024
Thu Nov 21 21:13:40 EST 2024
Tue Dec 28 13:59:11 EST 2021
Sat Sep 28 07:35:07 EDT 2024
Sun Oct 22 16:07:04 EDT 2023
Wed May 18 15:26:58 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Monte Carlo method
Intravenous administration
Oligosaccharide
Rodentia
Preclinical trial
Normal
In vitro
Biological activity
In vivo
Vertebrata
Antibiotic
Mammalia
Simulation
Mouse
Animal
Minimum inhibitory concentration
Antiinfectious
Antibacterial agent
Mathematical model
Pharmacokinetics
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a639t-2d91a2eef2878d3aaa3eb07e5f1777da174ec3465a62a170c889e3c660052e23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Corresponding author. Mailing address: Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208. Phone: (518) 262-6330. Fax: (518) 262-6333. E-mail: GLDRUSANO@AOL.COM.
OpenAccessLink https://doi.org/10.1128/aac.45.1.13-22.2001
PMID 11120938
PQID 17762064
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_70553587
pascalfrancis_primary_915423
proquest_miscellaneous_17762064
asm2_journals_10_1128_AAC_45_1_13_22_2001
crossref_primary_10_1128_AAC_45_1_13_22_2001
pubmed_primary_11120938
pubmedcentral_primary_oai_pubmedcentral_nih_gov_90233
highwire_asm_aac_45_1_13
PublicationCentury 2000
PublicationDate 20010101
2001
2001-Jan
2001-01-00
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: 20010101
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Antimicrobial Agents and Chemotherapy
PublicationTitleAbbrev Antimicrob. Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2001
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 11152427 - J Antimicrob Chemother. 2001 Jan;47(1):15-25
1929302 - Antimicrob Agents Chemother. 1991 Jul;35(7):1413-22
9697715 - J Infect Dis. 1998 Aug;178(2):360-7
3116917 - Antimicrob Agents Chemother. 1987 Jul;31(7):1054-60
6097124 - Am J Med. 1984 Dec 21;77(6A):43-50
8874628 - AIDS. 1996 Sep;10(10):1113-9
9440662 - JAMA. 1998 Jan 14;279(2):125-9
8384815 - Antimicrob Agents Chemother. 1993 Mar;37(3):483-90
9455502 - Clin Infect Dis. 1998 Jan;26(1):1-10; quiz 11-2
10049277 - Antimicrob Agents Chemother. 1999 Mar;43(3):623-9
8517694 - Antimicrob Agents Chemother. 1993 May;37(5):1073-81
10354859 - Diagn Microbiol Infect Dis. 1999 Jun;34(2):103-10
671222 - J Pharmacokinet Biopharm. 1978 Apr;6(2):165-75
6842025 - J Infect Dis. 1983 May;147(5):910-7
9990471 - Diagn Microbiol Infect Dis. 1999 Jan;33(1):19-25
Yamaoka, K., Nakagawa, T., Uno, T. (B16) 1978; 6
Blaser, J., Stone, B. B., Groner, M. C., Zinner, S. H. (B1) 1987; 31
Jones, R. N., Marshall, S. A., Erwin, M. E. (B10) 1999; 34
Drusano, G. L., Johnson, D. E., Rosen, M., Standiford, H. C. (B6) 1993; 37
B9a
Schentag, J. J., Smith, I. L., Swanson, D. J., DeAngelis, C., Fracasso, J. E., Vari, A., Vance, J. W. (B14) 1984; 77
Schumitzky, A. (B15) 1991; 45
Preston, S. L., Drusano, G. L., Berman, A. L., Fowler, C. L., Chow, A. T., Dornseif, B., Reichl, V., Natarajan, J., Corrado, M. (B13) 1998; 279
Craig, W. A. (B2) 1998; 26
B3
Fantin, B., Leggett, J., Ebert, S., Craig, W. A. (B7) 1991; 35
Kashuba, A. D., Nafziger, A. N., Drusano, G. L., Bertino, J. S. (B11) 1999; 43
Forrest, A., Nix, D. E., Ballow, C. H., Goss, T. F., Birmingham, M. C., Schentag, J. J. (B8) 1993; 37
Drusano, G. L., Aweeka, F., Gambertoglio, J., Jacobson, M., Polis, M., Lane, H. C., Eaton, C., Martin-Munley, S. (B4) 1996; 10
Drusano, G. L., Bilello, J. A., Stein, D. S., Nessly, M., Meibohm, A., Emini, E. A., Deutsch, P., Condra, J., Chodakewitz, J., Holder, D. J. (B5) 1998; 178
Gerber, A. U., Craig, W. A., Brugger, H. P., Feller, C., Vastola, A. P., Brandel, J. (B9) 1983; 147
Marshall, S. A., Jones, R. N., Ewin, M. E. (B12) 1999; 33
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
Drusano G. L. (e_1_3_2_6_2) 1998; 178
Schentag J. J. (e_1_3_2_16_2) 1984; 77
Gerber A. U. (e_1_3_2_10_2) 1983; 147
Drusano G. L. (e_1_3_2_5_2) 1996; 10
Schumitzky A. (e_1_3_2_17_2) 1991; 45
Jones R. N. (e_1_3_2_12_2) 1999; 34
Marshall S. A. (e_1_3_2_14_2) 1999; 33
References_xml – volume: 37
  start-page: 1073
  year: 1993
  end-page: 1081
  ident: B8
  article-title: Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients.
  publication-title: Antimicrob. Agents Chemother.
  contributor:
    fullname: Schentag, J. J.
– volume: 33
  start-page: 19
  year: 1999
  end-page: 25
  ident: B12
  article-title: Antimicrobial activity of SCH27899 (Ziracin), a novel everninomycin derivative, tested against Streptococcus spp.: disk diffusion-test method evaluations and quality control guidelines: Quality Control Study Group.
  publication-title: Diagn. Microbiol. Infect. Dis.
  contributor:
    fullname: Ewin, M. E.
– ident: B9a
  article-title: Jones, R. N., R. S. Hare, F. J. Sabatelli, and the Ziracin Susceptibility Testing Group. In vitro Gram-positive antimicrobial activity of evernimicin (SCH 27899), a novel oligosaccharide, compared with other antimicrobials: a multicentre international trial. J. Antimicrob. Chemother., in press.
– volume: 178
  start-page: 360
  year: 1998
  end-page: 367
  ident: B5
  article-title: Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables.
  publication-title: J. Infect. Dis.
  contributor:
    fullname: Holder, D. J.
– volume: 45
  start-page: 141
  year: 1991
  end-page: 157
  ident: B15
  article-title: Nonparametric EM algorithms for estimating prior distributions.
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Schumitzky, A.
– volume: 35
  start-page: 1413
  year: 1991
  end-page: 1422
  ident: B7
  article-title: Correlation between in vitro and in vivo activity of antimicrobial agents against gram-negative bacilli in a murine infection model.
  publication-title: Antimicrob. Agents Chemother.
  contributor:
    fullname: Craig, W. A.
– volume: 6
  start-page: 165
  year: 1978
  end-page: 175
  ident: B16
  article-title: Application of Akaike's Information Criterion (AIC) in the evaluation of linear pharmacokinetic equations.
  publication-title: J. Pharmacokinet Biopharm.
  contributor:
    fullname: Uno, T.
– volume: 31
  start-page: 1054
  year: 1987
  end-page: 1060
  ident: B1
  article-title: Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance.
  publication-title: Antimicrob. Agents Chemother.
  contributor:
    fullname: Zinner, S. H.
– volume: 77
  start-page: 43
  year: 1984
  end-page: 50
  ident: B14
  article-title: Role for dual individualization with cefmenoxime.
  publication-title: Am. J. Med.
  contributor:
    fullname: Vance, J. W.
– volume: 37
  start-page: 483
  year: 1993
  end-page: 490
  ident: B6
  article-title: Pharmacodynamics of a fluoroquinolone antimicrobial in a neutropenic rat model of Pseudomonas sepsis.
  publication-title: Antimicrob. Agents Chemother.
  contributor:
    fullname: Standiford, H. C.
– volume: 43
  start-page: 623
  year: 1999
  end-page: 629
  ident: B11
  article-title: Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria.
  publication-title: Antimicrob. Agents Chemother.
  contributor:
    fullname: Bertino, J. S.
– volume: 34
  start-page: 103
  year: 1999
  end-page: 110
  ident: B10
  article-title: Antimicrobial activity and spectrum of SCH27899 (Ziracin) tested against gram-positive species, including recommendations for routine susceptibility testing methods and quality control. Quality Control Study Group.
  publication-title: Diagn. Microbiol. Infect. Dis.
  contributor:
    fullname: Erwin, M. E.
– volume: 279
  start-page: 125
  year: 1998
  end-page: 129
  ident: B13
  article-title: Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials.
  publication-title: JAMA
  contributor:
    fullname: Corrado, M.
– volume: 147
  start-page: 910
  year: 1983
  end-page: 917
  ident: B9
  article-title: Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice.
  publication-title: J. Infect. Dis.
  contributor:
    fullname: Brandel, J.
– volume: 10
  start-page: 1113
  year: 1996
  end-page: 1119
  ident: B4
  article-title: Relationship between foscarnet exposure, baseline cytomegalovirus blood culture and the time to progression of cytomegalovirus retinitis in HIV-positive patients.
  publication-title: AIDS
  contributor:
    fullname: Martin-Munley, S.
– ident: B3
  article-title: D'Argenio D. Z. Schumitzky A. ADAPT II user's guide. 1995 University of Southern California Los Angeles
– volume: 26
  start-page: 1
  year: 1998
  end-page: 10
  ident: B2
  article-title: Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men.
  publication-title: Clin. Infect. Dis.
  contributor:
    fullname: Craig, W. A.
– ident: e_1_3_2_13_2
  doi: 10.1128/AAC.43.3.623
– ident: e_1_3_2_18_2
  doi: 10.1007/BF01117450
– ident: e_1_3_2_8_2
  doi: 10.1128/AAC.35.7.1413
– ident: e_1_3_2_2_2
  doi: 10.1128/AAC.31.7.1054
– volume: 45
  start-page: 141
  year: 1991
  ident: e_1_3_2_17_2
  article-title: Nonparametric EM algorithms for estimating prior distributions.
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Schumitzky A.
– volume: 178
  start-page: 360
  year: 1998
  ident: e_1_3_2_6_2
  article-title: Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables.
  publication-title: J. Infect. Dis.
  doi: 10.1086/515631
  contributor:
    fullname: Drusano G. L.
– volume: 77
  start-page: 43
  year: 1984
  ident: e_1_3_2_16_2
  article-title: Role for dual individualization with cefmenoxime.
  publication-title: Am. J. Med.
  doi: 10.1016/S0002-9343(84)80074-1
  contributor:
    fullname: Schentag J. J.
– ident: e_1_3_2_7_2
  doi: 10.1128/AAC.37.3.483
– volume: 10
  start-page: 1113
  year: 1996
  ident: e_1_3_2_5_2
  article-title: Relationship between foscarnet exposure, baseline cytomegalovirus blood culture and the time to progression of cytomegalovirus retinitis in HIV-positive patients.
  publication-title: AIDS
  contributor:
    fullname: Drusano G. L.
– volume: 33
  start-page: 19
  year: 1999
  ident: e_1_3_2_14_2
  article-title: Antimicrobial activity of SCH27899 (Ziracin), a novel everninomycin derivative, tested against Streptococcus spp.: disk diffusion-test method evaluations and quality control guidelines: Quality Control Study Group.
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/S0732-8893(98)00105-9
  contributor:
    fullname: Marshall S. A.
– ident: e_1_3_2_4_2
– volume: 34
  start-page: 103
  year: 1999
  ident: e_1_3_2_12_2
  article-title: Antimicrobial activity and spectrum of SCH27899 (Ziracin) tested against gram-positive species, including recommendations for routine susceptibility testing methods and quality control. Quality Control Study Group.
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/S0732-8893(98)00093-5
  contributor:
    fullname: Jones R. N.
– volume: 147
  start-page: 910
  year: 1983
  ident: e_1_3_2_10_2
  article-title: Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice.
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/147.5.910
  contributor:
    fullname: Gerber A. U.
– ident: e_1_3_2_11_2
– ident: e_1_3_2_3_2
  doi: 10.1086/516284
– ident: e_1_3_2_15_2
  doi: 10.1001/jama.279.2.125
– ident: e_1_3_2_9_2
  doi: 10.1128/AAC.37.5.1073
SSID ssj0006590
Score 2.1911047
Snippet Classifications Services AAC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on...
SourceID pubmedcentral
proquest
crossref
asm2
pubmed
pascalfrancis
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13
SubjectTerms Aminoglycosides
Animals
Anti-Bacterial Agents
Anti-Bacterial Agents - administration & dosage
Anti-Bacterial Agents - pharmacokinetics
Anti-Bacterial Agents - pharmacology
Antibacterial agents
Antibiotics. Antiinfectious agents. Antiparasitic agents
Area Under Curve
Bacterial Infections - chemically induced
Bacterial Infections - microbiology
Biological and medical sciences
Clinical Trials, Phase II as Topic
Clinical Trials, Phase III as Topic
Enterococcus faecalis
Enterococcus faecium
Evernimicin
Experimental Therapeutics
Gram-Positive Bacteria - drug effects
Medical sciences
Methicillin Resistance
Mice
Microbial Sensitivity Tests
Monte Carlo Method
Oligosaccharides - pharmacology
Pharmacology. Drug treatments
Protein Binding
Staphylococcus aureus
Staphylococcus aureus - drug effects
Streptococcus pneumoniae
Title Use of Preclinical Data for Selection of a Phase II/III Dose for Evernimicin and Identification of a Preclinical MIC Breakpoint
URI http://aac.asm.org/content/45/1/13.abstract
https://www.ncbi.nlm.nih.gov/pubmed/11120938
https://journals.asm.org/doi/10.1128/AAC.45.1.13-22.2001
https://search.proquest.com/docview/17762064
https://search.proquest.com/docview/70553587
https://pubmed.ncbi.nlm.nih.gov/PMC90233
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7RSiAuCMpjAwv4gFZCapLajvM4lrarzWFRpS0SN8txHG0FTSrSHnrirzPOY7tFwAEph0QZJ25nxjPjzHwD8AFtSKgnPHMTbUG1qeZuxkTmiphp9LZF1uJsX91En7_G84WFyeF9LUyTtK-ztVd-33jl-rbJrdxutN_nifnL61mChob7AxigZ9gH6N3iG4p2WwUtqRvEk6ADGsJV2J9OZ14gPOpR7rIGg7JpE0Nt9agtTxmqesNOzVMPGWwzJlWNf1rRdrv4kzv6e1blPTN1-RSedP4lmba_4xk8MOUIHrYdJw8jeHTdfUsfwcWyRa0-jMnqWIRVj8kFWR7xrA_P4eeX2pCqIEtcHLs6SjJXO0XQ3yU3TR8dZK6lUHYkEqepn6YpmVd4bokWtp_vemNfTFSZk7Y6uOi2C7uR956OokE-oTf7bVuty90LWF0uVrMrt-vb4Cr0d3YuyxOqmDEFRmNxzpVS3GSTyIiCRlGUKwyCjOZBKFTI8GKi4zgxXIeh3aM2jL-EYVmV5gyIKbKEJhj8U5YHRlkw-0xH2gg8Ra4VDny0TJOd3tWyCWlYLJHXMhCSSsolY7bXJnVg3HNWblskj3-Tn_Xcl_gOqZTuSRw4P5GGu8fh9NA7deB9LxwSddV-gFGlqfY4uwhND_qAf6ew2EZcxJEDr1phOk61k1MHxImY3RFYnPDTO6g-DV54oy6v_3PcG3jcpt3Z4xyGux978xYGdb5_12jeL-n-LVI
link.rule.ids 230,315,729,782,786,887,4028,27932,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xRbBceJTHBhbWB7QSUpMmdpzHsbRdNWK7qrRF4mY5jiMqtmlF2kNP_HXGeWy3CDislEOijB0n_uwZOzPfAHxEHRIol6V2rAyptqeYnVKe2jyiCq1tntY825Pr8OpbNBobmhzWxsJUTvsqXTjFzdIpFt8r38r1UvVbP7H-bDqMUdGw_hE8xNHquu0SvZl-A15vrKAutf3I9RuqIZyH-4PB0PG54zkes2nFQlklivFM_KgJUOnIckkPFVRLGmx8JmWJny2v8138zSD906_yjqK6eHavV3wOTxu7lAzqmy_ggS668KjOVLnrwuNp8w--C-ezmu161yPzffBW2SPnZLbnwd69hF9fS01WOZnhpNrEX5KR3EiCdjK5rvLvICiMhDQlUThJ-kmSkNEKz43Q2OQBXizNg4ksMlJHFefNNmNT8k7tCCnyGa3gH-vVoti8gvnFeD6c2E2-B1uinbSxaRZ7kmqd4youypiUkunUDTXPvTAMM4mLJ62YH3AZULxwVRTFmqkgMHvbmrLX0ClWhT4BovM09mKdol7OfC0NCX6qQqU5nmJf5xZ8Ml0tmvFaimopRCOBCBE-F57wmKDU5Oj0LOi1eBDrmgHk_-InLWYEPkNIqVoRC04PMHRbHTYPrVoLzlpICRzj5seNLPRqi60LUWWh7fhvCcOJxHgUWvCmhuC-qQ26LeAH4LwVMPzih3cQkxXPeIXBt_csdwbHk_n0UlwmV1_ewZPadc8cp9DZ_Nzq93BUZtsP1dj9DfxIQmk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xRay48CgsG1hYH9BKSE3T2HEex9KHNoJdRdoicbMcxxEVNKlIe-iJv844j-0WAYeVckiUcewknz1je-YbgPeoQ3w1YqkdKUOq7Spmp5SnNg-pQmubpw3P9uVNcP01nM4MTU7QxcLUTvsqXQ6LH6thsfxW-1auV8rp_MSc5GoSoaJhzjrLnSN4iD12RLtpejsE-7xZXEF9anvhyGvphnAsdsbjydDjQ3foMpvWTJR1shjXxJCaIJWerFb0UEl1xMHGb1JW-OnyJufF34zSP30r7yir-dN7v-YzeNLap2TcCDyHB7row6MmY-WuD8dX7V58Hy6ShvV6NyCLfRBXNSAXJNnzYe9ewK8vlSZlThIcXNs4TDKVG0nQXiY3dR4eBIeRkKYkCsexE8cxmZZ4boRmJh_wcmUqJrLISBNdnLfLjW3JO09HaJGPaA1_X5fLYvMSFvPZYnJpt3kfbIn20samWeRKqnWOs7kwY1JKptNRoHnuBkGQSZxEacU8n0uf4sVIhWGkmfJ9s8atKTuBXlEW-hSIztPIjXSK-jnztDRk-KkKlOZ4iv87t-CD-d2i7beVqKdENBSIEuFx4QqXCUpNrk7XgkGHCbFumED-L37a4UZgHUJK1YlYcHaAo9vHYfPQurXgvIOVwL5uNnBkocstti5A1YU25L8lDDcS42FgwasGhvumtgi3gB8A9FbA8Iwf3kFc1nzjNQ5f37PcORwn07n4HF9_egOPGw8-c5xBb_Nzq9_CUZVt39Xd9zclWkTp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+preclinical+data+for+selection+of+a+phase+II%2FIII+dose+for+evernimicin+and+identification+of+a+preclinical+MIC+breakpoint&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=DRUSANO%2C+G.+L&rft.au=PRESTON%2C+S.+L&rft.au=HARDALO%2C+C&rft.au=HARE%2C+R&rft.date=2001&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=45&rft.issue=1&rft.spage=13&rft.epage=22&rft_id=info:doi/10.1128%2Faac.45.1.13-22.2001&rft.externalDBID=n%2Fa&rft.externalDocID=915423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon