Eocene cooling linked to early flow across the Tasmanian Gateway
The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 24; pp. 9645 - 9650 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
National Academy of Sciences
11-06-2013
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52–50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO ₂). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ∼49–50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2–4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO ₂ forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling. |
---|---|
Bibliography: | http://dx.doi.org/10.1073/pnas.1220872110 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 3A complete list of the Expedition 318 Scientists and their affiliations can be found in Supporting Information. Author contributions: P.K.B., J.A.P.B., J.P., S.S., A.S., and H.B. designed research; P.K.B., J.A.P.B., J.P., S.S., and C.E.S. performed research; Exp. 318 sci. gathered samples; P.K.B., J.A.P.B., S.M.B., J.P., S.S., L.T., C.E.S., R.M.M., U.R., M.O., A.S., C.E., and H.B. analyzed data; and P.K.B., J.A.P.B., S.M.B., J.P., S.S., L.T., C.E.S., R.M.M., U.R., A.S., C.E., and H.B. wrote the paper. 2Present address: Birmingham Molecular Climatology Laboratory (BMC), School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom. Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved April 23, 2013 (received for review November 30, 2012) |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1220872110 |