Fish foraging patterns, vulnerability to fishing, and implications for the management of ecosystem function across scales

The function of species has been recognized as critical for the maintenance of ecosystems within desired states. However, there are still considerable gaps in our knowledge of interspecific differences in the functional roles of organisms, particularly with regard to the spatial scales over which fu...

Full description

Saved in:
Bibliographic Details
Published in:Ecological applications Vol. 23; no. 7; pp. 1632 - 1644
Main Authors: Nash, Kirsty L, Graham, Nicholas A. J, Bellwood, David R
Format: Journal Article
Language:English
Published: Washington, DC Ecological Society of America 01-10-2013
ECOLOGICAL SOCIETY OF AMERICA
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The function of species has been recognized as critical for the maintenance of ecosystems within desired states. However, there are still considerable gaps in our knowledge of interspecific differences in the functional roles of organisms, particularly with regard to the spatial scales over which functional impact is exerted. This has implications for the delivery of function and the maintenance of ecosystem processes. In this study we assessed the allometric relationship between foraging movements and fish body length at three sites, for 20 species of herbivorous reef fishes within four different functional groups: browsers, farmers, grazer/detritivores, and scraper/excavators. The relationship between vulnerability of species to fishing and their scale of foraging was also examined. We present empirical evidence of the strong, positive, log-linear relationship between the scale of foraging movement and fish body length. This relationship was consistent among sites and between the two different movement metrics used. Phylogeny did not affect these results. Functional groups foraged over contrasting ranges of spatial scales; for example, scraper/excavators performed their role over a wide range of scales, whereas browsers were represented by few species and operated over a narrow range of scales. Overfishing is likely not only to remove species operating at large scales, but also to remove the browser group as a whole. Large fishes typically have a significant role in removing algae on reefs, and browsers are key to controlling macroalgae and reversing shifts to macroalgal-dominated states. This vulnerability to exploitation has serious consequences for the ability of fish assemblages to deliver their functional role in the face of anthropogenic impacts. However, identification of the scales at which herbivorous fish assemblages are susceptible to fishing provides managers with critical knowledge to design management strategies to support coral-dominated reefs by maintaining function at the spatial scales at which vulnerable species operate.
Bibliography:Corresponding Editor: P. K. Dayton.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1051-0761
1939-5582
DOI:10.1890/12-2031.1